

Overview of the Advanced Circulation (ADCIRC) Coastal Ocean Modeling Framework

Clint Dawson

The University of Texas at Austin

Institute for Computational Engineering and Sciences

ADCIRC Development Group (www.adcirc.org)

- Joannes Westerink, University of Notre Dame
- Rick Luettich, UNC Chapel Hill
- Randy Kolar, University of Oklahoma
- C.D., UT Austin
- Brian Blanton, RENCI, Chapel Hill
- Casey Dietrich, UT Austin
- Jason Fleming, Seahorse Consulting
- Chris Massey, ERDC

• Major contributors: Arcadis, Inc.; Naval Research Laboratory, Stennis; U.S. Army Corps of Engineers ERDC and New Orleans District office.

ADCIRC design philosophy

- Accurately define the physical system
- Include all of the physical processes
- Numerically resolve the flow
- Ensure accuracy of the solution to the PDE's

ADCIRC design criteria

- High grid resolution to define and capture
 - Local topography and bathymetry
 Local roughness
 Critical hydraulic conveyances
 Structures and raised features that impede or focus flow
 Wind wave transformation scales
- Accurate numerical algorithms that

 Are not numerically dissipative
 Are phase accurate
 Accommodate high spatial gradients
 Are robust for high velocity flows

ADCIRC design criteria

- Fully integrate all important processes into the model
 - Accurate winds
 - Accurate momentum transfer to the water column
 - Riverine flows
 - Tides
 - Short wind waves
- Validation

Overview of the modeling system

- ADCIRC Circulation model
- SWAN Wind wave model (TU Delft)
- Various Wind inputs (NOAA, Whirlwinds, OWI, NHC forecasts, NCEP forecasts)
- Finite element discretizations on unstructured meshes
- Scalable parallel implementation

Models : ADCIRC : ADvanced CIRCulation

• Solves the Generalized Wave Continuity Equation (GWCE):

$$\frac{\partial^2 \zeta}{\partial t^2} + \tau_0 \frac{\partial \zeta}{\partial t} + \frac{\partial \tilde{J}_x}{\partial x} + \frac{\partial \tilde{J}_y}{\partial y} - UH \frac{\partial \tau_0}{\partial x} - VH \frac{\partial \tau_0}{\partial y} = 0$$

where:

$$\tilde{J}_{x} = -Q_{x}\frac{\partial U}{\partial x} - Q_{y}\frac{\partial U}{\partial y} + fQ_{y} - \frac{g}{2}\frac{\partial \xi^{2}}{\partial x} - gH\frac{\partial}{\partial x}\left[\frac{p_{s}}{g\rho_{0}} - \alpha\eta\right] + \frac{\tau_{sx} + \tau_{bx}}{\rho_{0}} + \left(M_{x} - D_{x}\right) + U\frac{\partial \xi}{\partial t} + \tau_{0}Q_{x} - gH\frac{\partial \xi}{\partial x}$$
$$\tilde{J}_{y} = -Q_{x}\frac{\partial V}{\partial x} - Q_{y}\frac{\partial V}{\partial y} - fQ_{x} - \frac{g}{2}\frac{\partial \xi^{2}}{\partial y} - gH\frac{\partial}{\partial y}\left[\frac{p_{s}}{g\rho_{0}} - \alpha\eta\right] + \frac{\tau_{sy} + \tau_{by}}{\rho_{0}} + \left(M_{y} - D_{y}\right) + V\frac{\partial \xi}{\partial t} + \tau_{0}Q_{y} - gH\frac{\partial \xi}{\partial y}$$

• Solves the vertically-integrated momentum equations:

$$\frac{\partial U}{\partial t} + U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial y} - fV = -g\frac{\partial}{\partial x}\left[\xi + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sx} + \tau_{bx}}{\rho_0 H} + \frac{M_x - D_x}{H}$$

$$\frac{\partial V}{\partial t} + U\frac{\partial V}{\partial x} + V\frac{\partial V}{\partial y} + fU = -g\frac{\partial}{\partial y}\left[\zeta + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sy} + \tau_{by}}{\rho_0 H} + \frac{M_y - D_y}{H}$$

Models : SWAN : Simulating Waves Nearshore

• Solves the action balance equation:

$$\frac{\partial N}{\partial t} + \nabla_{\vec{x}} \cdot \left[\left(\vec{c}_g + \vec{U} \right) N \right] + \frac{\partial c_\theta N}{\partial \theta} + \frac{\partial c_\sigma N}{\partial \sigma} = \frac{S_{tot}}{\sigma}$$

• Computes significant wave heights and returns wave radiation stresses to ADCIRC

Spatial Discretization: the FEM method

- Both ADCIRC and SWAN are discretized using a continuous Galerkin method on unstructured triangular elements
- All unknowns are approximated at the vertices of triangles

Applications of ADCIRC

- Tidal data base for U.S. East Coast and Gulf of Mexico
- Hindcasts of major Gulf and East Coast Hurricanes
- Water levels for all **levee designs** in Southern Louisiana are based on models developed by our team
- Water levels for the **FEMA DFIRMS** (Digital Flood Insurance Rate Maps) for Louisiana, Texas, Mississippi, Florida, Georgia, South Carolina and North Carolina are based on ADCIRC models (our team developed the TX and LA models)
- ADCIRC is used as a hurricane forecasting tool by an LSU-UNC-UT team to provide emergency response information for the States of Louisiana and Texas
- Used to study DH oil spill

Western North Atlantic ADCIRC Model

Western North Atlantic—finite element mesh

Zoom: Southern Louisiana and Mississippi

Southeastern Louisiana

New Orleans

Southern LA and MS finite element mesh

Bottom Friction

- Surface roughness is based on USGS NLCD and GAP land cover/use data
- Standard Manning n values are assigned

National Land Cover Dataset Classification System Legend					
Color Key	RGB Value	Class Number and Name			
	102, 140, 190 255,255,255	11 - Open Water 12 - Perennial Ice/Snow			
	253, 229, 228 247, 178, 159 231, 86, 78	21 - Low Intensity Residential 22 - High Intensity Residential 23 - Commerical/Industrial/Transportation			
	210, 205, 192 175, 175, 177 83, 62, 118	31 - Bare Rock/Sand/Clay 32 - Quarries/Strip Mines, Gravel Pits 33 - Transitional			
	134, 200, 127 26, 129, 78 212, 231, 177	41 - Deciduous Forest 42 - Evergreen Forest 43 - Mixed Forest			
	220, 202, 143	51 - Shrubland			
	187, 174, 118 253, 233, 170	61 - Orchards/Vineyards 71 - Grasslands/Herbaceous			
	252, 246, 93 202, 145, 71 121, 108, 75 244, 238, 203 240, 156, 054	81 - Pasture/Hay 82 - Row Crops 83 - Small Grains 84 - Fallow 85 - Urban/Recreational Grasses			
	201, 230, 249 144, 192, 217	91 - Woody Wetlands 92 - Emergent Herbaceous Wetlands			

NLCD Class	Description	Manning- n
11	Open Water	0.022
12	Ice/Snow	0.020
21	Low Residential	0.120
22	High Residential	0.140
23	Commercial	0.050
31	Bare Rock/Sand	0.040
32	Gravel Pit	0.060
33	Transitional	0.100
41	Deciduous Forest	0.140
42	Evergreen Forest	0.160
43	Mixed Forest	0.140
51	Shrub Land	0.050
61	Orchard/Vineyard	0.100
71	Grassland	0.034
81	Pasture	0.030
82	Row Crops	0.035
83	Small Grains	0.035
84	Fallow	0.030
85	Recreational Grass	0.025
91	Woody Wetland	0.120
92	Herbaceous Wetland	0.035
95	Cypress Forest	0.120

- Improvements in winds by incorporating directional land roughness to adjust the overland/near-shore wind boundary layer
- Incorporation of canopies where winds are zeroed due to loss of momentum propagating through the canopy.
- Dynamic wind drag coefficient variation between land and sea values as region becomes inundated.

NLCD Class	Description	Z _{0-land}
11	Open Water	0.001
12	Ice/Snow	0.012
21	Low Residential	0.330
22	High Residential	0.500
23	Commercial	0.390
31	Bare Rock/Sand	0.090
32	Gravel Pit	0.180
33	Transitional	0.180
41	Deciduous Forest	0.650
42	Evergreen Forest	0.720
43	Mixed Forest	0.710
51	Shrub Land	0.120
61	Orchard/Vineyard	0.270
71	Grassland	0.040
81	Pasture	0.060
82	Row Crops	0.060
83	Small Grains	0.050
84	Fallow	0.050
85	Recreational Grass	0.050
91	Woody Wetland	0.550
92	Herbaceous Wetland	0.110
95	Cypress Forest	0.550

ADCIRC Texas Model

Bathymetry & Topography of the Upper Texas Gulf Coast

Upper Texas Coast Model Resolution

Grid Sizes

Storm Surge Simulations

Hindcasting: Studying historical hurricanes

- Evaluate inundation risk in coastal areas
 - High impact low probability events in an evolving system
- Critical to design of protection and mitigation systems in order to reduce that risk
 - Structures may in fact adversely impact components of the system and increase the risk of flooding

Forecasting: As storms approach land, estimate maximum surge and extent of inundation for emergency management. Must be done in "real-time"

2005 Hurricane Season

Katrina : 08/28 – 08/29

Rita : 09/22 – 09/24

2005 Hurricane Season

2005 Hurricane Season : Katrina : Inundation of New Orleans

2005 Hurricane Season : Rita : Inundation of Cameron Parish

Katrina : Water Levels : 2005/08/29

Katrina : Water Levels : Maximum

Katrina : Significant Wave Heights : Maximum

Hurricane Season 2008

COPYRIGHT © 2008 by RAY STERNER & STEVE BABIN, JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY

Hindcast Study of Hurricane Ike

r09 c8+tides Water Surface Elevations + Winds

r09 c8+tides Water Surface Elevations + Winds

- 43 hrs

r09 c8+tides Water Surface Elevations + Winds

- 38 hrs

r09 c8+tides Water Surface Elevations + Winds

- 33 hrs

r09 c8+tides Water Surface Elevations + Winds

- 30 hrs

r09 c8+tides Water Surface Elevations + Winds

- 29 hrs

r09 c8+tides Water Surface Elevations + Winds

- 28 hrs

r09 c8+tides Water Surface Elevations + Winds

- 27 hrs

r09 c8+tides Water Surface Elevations + Winds

- 26 hrs

r09 c8+tides Water Surface Elevations + Winds

- 25 hrs

r09 c8+tides Water Surface Elevations + Winds

- 24 hrs

r09 c8+tides Water Surface Elevations + Winds

- 23 hrs

r09 c8+tides Water Surface Elevations + Winds

- 22 hrs

r09 c8+tides Water Surface Elevations + Winds

- 21 hrs

r09 c8+tides Water Surface Elevations + Winds

- 20 hrs

r09 c8+tides Water Surface Elevations + Winds

- 19 hrs

r09 c8+tides Water Surface Elevations + Winds

- 18 hrs

r09 c8+tides Water Surface Elevations + Winds

- 17 hrs

r09 c8+tides Water Surface Elevations + Winds

- 16 hrs

r09 c8+tides Water Surface Elevations + Winds

- 15 hrs

r09 c8+tides Water Surface Elevations + Winds

- 14 hrs

r09 c8+tides Water Surface Elevations + Winds

- 13 hrs

r09 c8+tides Water Surface Elevations + Winds

- 12 hrs

r09 c8+tides Water Surface Elevations + Winds

- 11 hrs

r09 c8+tides Water Surface Elevations + Winds

- 10 hrs

r09 c8+tides Water Surface Elevations + Winds

- 9 hrs

r09 c8+tides Water Surface Elevations + Winds

- 8 hrs

r09 c8+tides Water Surface Elevations + Winds

- 7 hrs

r09 c8+tides Water Surface Elevations + Winds

- 6 hrs

r09 c8+tides Water Surface Elevations + Winds

- 5 hrs

r09 c8+tides Water Surface Elevations + Winds

- 4 hrs

r09 c8+tides Water Surface Elevations + Winds

- 3 hrs

r09 c8+tides Water Surface Elevations + Winds

- 2 hrs

r09 c8+tides Water Surface Elevations + Winds

- 1 hrs

r09 c8+tides Water Surface Elevations + Winds

LANDFALL 0 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 1 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 2 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 3 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 4 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 5 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 6 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 7 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 8 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 9 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 10 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 11 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 12 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 13 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 14 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 15 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 16 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 17 hrs

r09 c8+tides Water Surface Elevations + Winds

+ 18 hrs

Measured Peak Value, m

Date in 2008

r09 c8+tides Sig. Wave Heights

- 48 hrs

r09 c8+tides Sig. Wave Heights

- 47 hrs

r09 c8+tides Sig. Wave Heights

- 46 hrs

r09 c8+tides Sig. Wave Heights

- 45 hrs

r09 c8+tides Sig. Wave Heights

- 44 hrs

r09 c8+tides Sig. Wave Heights

- 42 hrs

r09 c8+tides Sig. Wave Heights

- 41 hrs

r09 c8+tides Sig. Wave Heights

- 40 hrs

r09 c8+tides Sig. Wave Heights

- 39 hrs

r09 c8+tides Sig. Wave Heights

- 38 hrs

r09 c8+tides Sig. Wave Heights

- 37 hrs

r09 c8+tides Sig. Wave Heights

- 36 hrs

r09 c8+tides Sig. Wave Heights

- 35 hrs

r09 c8+tides Sig. Wave Heights

- 34 hrs

r09 c8+tides Sig. Wave Heights

- 33 hrs

r09 c8+tides Sig. Wave Heights

- 32 hrs

r09 c8+tides Sig. Wave Heights

- 31 hrs

r09 c8+tides Sig. Wave Heights

- 30 hrs

r09 c8+tides Sig. Wave Heights

- 29 hrs

r09 c8+tides Sig. Wave Heights

- 28 hrs

r09 c8+tides Sig. Wave Heights

- 27 hrs

r09 c8+tides Sig. Wave Heights

- 26 hrs

r09 c8+tides Sig. Wave Heights

- 25 hrs

r09 c8+tides Sig. Wave Heights

- 24 hrs

r09 c8+tides Sig. Wave Heights

- 23 hrs

r09 c8+tides Sig. Wave Heights

- 22 hrs

r09 c8+tides Sig. Wave Heights

- 21 hrs

r09 c8+tides Sig. Wave Heights

- 20 hrs

r09 c8+tides Sig. Wave Heights

- 19 hrs

r09 c8+tides Sig. Wave Heights

- 18 hrs

r09 c8+tides Sig. Wave Heights

- 17 hrs

r09 c8+tides Sig. Wave Heights

- 16 hrs

r09 c8+tides Sig. Wave Heights

- 15 hrs

r09 c8+tides Sig. Wave Heights

- 14 hrs

r09 c8+tides Sig. Wave Heights

- 13 hrs

r09 c8+tides Sig. Wave Heights

- 12 hrs

r09 c8+tides Sig. Wave Heights

- 11 hrs

r09 c8+tides Sig. Wave Heights

- 10 hrs

r09 c8+tides Sig. Wave Heights

- 9 hrs

r09 c8+tides Sig. Wave Heights

- 8 hrs

r09 c8+tides Sig. Wave Heights

- 7 hrs

r09 c8+tides Sig. Wave Heights

- 6 hrs

r09 c8+tides Sig. Wave Heights

- 5 hrs

r09 c8+tides Sig. Wave Heights

- 4 hrs

r09 c8+tides Sig. Wave Heights

- 3 hrs

r09 c8+tides Sig. Wave Heights

- 2 hrs

r09 c8+tides Sig. Wave Heights

- 1 hrs

r09 c8+tides Sig. Wave Heights

LANDFALL = 0 hrs

r09 c8+tides Sig. Wave Heights

+ 1 hrs

r09 c8+tides Sig. Wave Heights

+ 2 hrs

r09 c8+tides Sig. Wave Heights

+ 3 hrs

r09 c8+tides Sig. Wave Heights

+ 4 hrs

r09 c8+tides Sig. Wave Heights

+ 5 hrs

r09 c8+tides Sig. Wave Heights

+ 6 hrs

r09 c8+tides Sig. Wave Heights

+ 7 hrs

r09 c8+tides Sig. Wave Heights

+ 8 hrs

r09 c8+tides Sig. Wave Heights

+ 9 hrs

r09 c8+tides Sig. Wave Heights

+ 10 hrs

r09 c8+tides Sig. Wave Heights

+ 11 hrs

r09 c8+tides Sig. Wave Heights

+ 12 hrs

r09 c8+tides Sig. Wave Heights

+ 13 hrs

r09 c8+tides Sig. Wave Heights

+ 14 hrs

r09 c8+tides Sig. Wave Heights

+ 15 hrs

r09 c8+tides Sig. Wave Heights

+ 16 hrs

r09 c8+tides Sig. Wave Heights

+ 17 hrs

r09 c8+tides Sig. Wave Heights

+ 18 hrs

Validation : High-Water Marks

MEASURED PEAK VALUE, m

Applications : Hurricane Forecasting : Isaac

Applications: Hurricane Forecasting: Isaac (2012)

ADCIRC Surge Guidance System (ASGS)

Runs continuously during hurricane season:

- Uses wind forecasts every 6hr from NHC to force SWAN+ADCIRC
- Portable to any unstructured mesh:
 - UT Austin Texas floodplain from west Louisiana to Mexico border
 - LSU entire Louisiana floodplain with focus on New Orleans
 - UNC Chapel Hill floodplains of the Carolinas

Surge guidance to emergency managers during Isaac (2012):

- LSU and UNC Chapel Hill provided Web-based guidance:

(<u>http://cera.cct.lsu.edu/cgi-cera-ng/cera-ng.cgi</u>)

- UT Austin also provided ASGS forecasts:

- TX State Operations Center
- NWS Fort Worth
- NWS Miami

Applications : Hurricane Forecasting : Isaac

Evolution of Surge Forecasts

Maximum surge on EC95 mesh at 6hr intervals:

- Advisory 14 : About 105hr before projected landfall at Destin FL
- Advisory 38 : About 39hr after actual landfall at Mississippi River

Deepwater Horizon Oil Spill

Deepwater Horizon was a 9-year-old, mobile offshore drilling unit Located 66km from the Louisiana coastline, in 1500m of water

Platform was engulfed on 20 April by an explosion of methane gas; structure burned for more than 24hr before sinking on 22 April

Explosion killed 11 workers and injured 17 Oil spill flow rates:

- Estimated to have begun at a rate of 9900 m³ d⁻¹
- Diminished over time to a final rate of 8400 m³ d⁻¹ on 15 July 2010
 Emergency responders relied on satellite and aerial imagery

Nearshore Oil Transport : Motivation

Satellite imagery can only show current location of the slick

- Where will the oil move?
- What happens if a hurricane approaches?
- Forecasts of oil transport need to be <u>accurate</u> and <u>fast</u>
 - Provide results to NOAA and other spill modelers
 - Provide results to emergency managers

in real time (http://adcirc.org/oilspill)

Nearshore Oil Transport : Lagrangian Particles

Particle positions are tracked through the unstructured mesh:

$$\vec{x}_p(t + \Delta t) = \vec{x}_p(t) + \vec{u}(\vec{x}_p, t)\Delta t + \vec{D}$$

- where the dispersion uses a stochastic perturbation (Proctor et al., 1994):

$$\vec{D} = (2R - 1)\sqrt{\vec{c}\vec{E}_v\Delta t}$$

- and where the velocities are a linear combination of currents and winds:

$$\vec{u}(\vec{x}_p, t) = F_c \vec{u}_c(\vec{x}_p, t) + F_w \vec{u}_w(\vec{x}_p, t)$$

Using hybrid OpenMP/MPI, 11M particles can be tracked on a 10M-element mesh in about **5.5 min/day** using 256 cores on TACC Ranger.

Nearshore Oil Transport : Flow Chart

Validation : Mid-June

Examples of available imagery during 13-23 June 2010:

- NESDIS consolidated observations from a suite of satellite sensors

Validation : Mid-June

Satellite Observations

Satellite Observations

Satellite Observations

Satellite Observations

Overlap of our predictions to observations:

- Solid brown Total areas of observed oil in satellite imagery
- Solid red- Total areas of predicted locations of Lagrangian particles
- **Dashed red** Overlap between predictions and observations

After one week of simulation, overlap is about 60 percent

- Good qualitative and quantitative match to observations

Conclusions

ADCIRC model is a verified and validated tool for modeling coastal hydrodynamics, hurricane storm surges and oil spills. This is a great example of how basic algorithmic research can be transitioned into operational models.

ADCIRC forecast system runs successfully in real-time

Good match to overall movement of oil spill

Open Questions

3D baroclinic, deep-water to near-shore to inland coupling (ADCIRC coupled to HYCOM, see Casey Dietrich's talk tomorrow)

3D Oil transport, bioegradation, weathering, etc. (Lagrangian vs. Eulerian methods; collaboration with Juan Restrepo and Shankar V.)

