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Turbulence?

“I shall not today attempt to further define {. . .}.
. . . but I know it when I see it.” (Potter Stewart, 1964)

Tennekes & Lumley:

Irregular (random?) motion.
Diffusive - rapid mixing of mass &
momentum.
Continuum - (know equations).
Large Reynolds Number - multiple
scales.
Dissipative - energy lost.
3D vorticity fluctuations.

“Turbulence is the norm, not the
exception.”, JLL
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Goals: How turbulent was GLAD?

Monin & Yaglom view of GLAD data:

Lagrangian observations⇔ Eulerian
velocity field

I Scale dependence of velocity
fluctuations

I Wavenumber spectrum

Assume Turbulence:
I Theory⇔ Data (?)
I Which turbulence? (2D-3D?)

Mesoscale-Submesoscale Boundary
I Timescales:

minutes ≤ τ ≤ weeks .
I Lengthscales:

100 meters ≤ r ≤ 100 kilometers.

S1 Launch

C1 Launch
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100+ years of Turbulence Theory (in ∼10 minutes)

Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser
whorls
And so on to viscosity.
– Lewis F. Richardson,1920

Assumptions:
Re = ULt

ν � 1
Energy:

I Input at large-scales: Lt .
I Viscous dissipation at scale η where ηu

ν ∼ 1
Cascade of energy from Lt to η.
In inertial range: η� l � Lt

I Statistics independent of both:
F Specifics of large scale forcing.
F Specifics of small scale dissipation. (ν itself).

I Only system parameter is Cascade Rate:
ε = Energy dissipation rate.



Turbulence Theory: Tools

Two-Point Statistics:

Correlations:

Bij(x,x′, t , t ′) = 〈ui(x, t)uj(x′, t ′)〉
Stationary and Homogeneous:

Bij(R, r, t , t ′) = Bij(r, t − t ′)

Isotropic:

Bij(r, t−t ′) = Bij(||r||, t−t ′) = Bij(r , t−t ′) =

New Coordinates:

Bll(r , τ) = 〈ul(r , t + τ)ul(0, t)〉
B⊥⊥(r , τ) = 〈uT (r , t + τ)uT (0, t)〉
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Turbulence Theory: Tools

One-time, Two-Point Correlations - Energy spectra

Stationary, Homogeneous:

Rij(r) = 〈ui(x + r, t)uj(x, t)〉
Fourier Transform:

Rij(r) = F −1
{
φij(k)

}
Spectral Energy Density:

Rii(0) = 〈ui(x, t)ui(x, t)〉 =

∞$
−∞

φii(k)dk

E(k ) =
1
2

	
φii(k)dσ, E =

∞∫
0

E(k )dk



Turbulence Theory: Kolmogorov’s Local Structure of Fluctuations

Local Isotropy - Structure Functions:

Velocity increment:

∆ru = u(x + r, t) − u(x, t)

In inertial range: P(∆ru)
stationary, homogeneous and
isotropic.
Structure functions:

S l
p(r) = 〈(∆ruL )p〉

In inertial range:
Sp(r) = f(ε, r)

By dimensional arguments:

S l
2(r) = 〈(∆ruL )2〉 ≈ Cε2/3r2/3

In wavenumber space:

E(k ) = C ′ε2/3k−5/3

Define local timescale:

τ(r) = r
(
〈(∆ruL )2〉

)−1/2

τ(r) ≈ r2/3



3D Kolmogorov & 2D Kraichnan:

Local, 3D Energy Cascade:
E(k ) = g(k , ε), [ε] = L2/T3

Only dimensionally consistent
relation:

E(k ) = Kε2/3k−5/3

Physical space:

S2(r) ∼ r2/3

Local time-scale:

τr ∼ r√
S2(r)

∼ r2/3

Richardson ’26:

D2(t) ∼ t3

Local, 2D Enstrophy Cascade:
E(k ) = g(k , η), [η] = 1/T3

Only dimensionally consistent
relation:

E(k ) = Kηη2/3k−3

Physical space:

S2(r) ∼ r2

Local time-scale:

τr ∼ r√
S2(r)

∼ Const

Exponential:

lim
δ→0

λ(δ) = λ0
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3D Kolmogorov & 2D Kraichnan:

3D Turbulence: Wittwer et al 2D Turbulence: Vallis

Major Question: How does geostrophic ocean dissipate energy?

A Perspective on Submesoscale Geophysical
Turbulence

James C. McWilliams

1 The Dynamical Regime of Submesoscale Turbulence

Define the submesoscale regime as the geophysical fluid dynamics that arise from
advective processes and that have a marginal degree of dynamical control by plan-
etary rotation and stable density stratification. The degrees are conventionally mea-
sured by a Rossby number, Ro = V/ f L (V a horizontal speed, f the Coriolis fre-
quency, L a horizontal length), and a Froude number, Fr = V/NH (N a stratifica-

Fig. 1 Sketch of the flow of dynamical control and energy from the global forcing of the general
circulation through the balanced mesoscale and partially-balanced submesoscale ranges down to
the isotropic microscale where dissipation occurs.

James C. McWilliams
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-
1567, USA, e-mail: jcm@atmos.ucla.edu

D. Dritschel (ed.), IUTAM Symposium on Turbulence in the Atmosphere and Oceans,
IUTAM Bookseries 28, DOI 10.1007/978-94-007-0360-5 11,
© Springer Science+Business Media B.V. 2010

131

(McWilliams, 2010)



GLAD: Observing Relative Dispersion at ∼Submesoscales



GLAD: Submesoscale Relative Dispersion

Comparisons:

In Canyon: S1 and S2
I Strong frontal signatures in T-S.
I Strong diurnal/inertial signals.
I Slow spreading (S1), high data density at

small scales.

‘Open Ocean’: C1
I Targeted energetic cyclonic eddy

(l ∼ O(30km)).
I Diurnal/inertial signal less dominant.
I Lower data density at small scales.

Altimetry Data: (S1 and S2)
I Olascoaga, Beron-Vera, Iskandarani.
I Strictly geostrophic velocities from

observations.



GLAD: Submesoscale Relative Dispersion
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S1: β = 0.66
S2: β = 0.67
C1: β = 1.08
Altimetry: β = 2.0

E(k ) ∼ k−(1+β)

S1: E(k ) ∼ k−5/3

S2: E(k ) ∼ k−5/3

C1: E(k ) ∼ k−2

Altimetry: E(k ) ∼ k−γ, γ ≥ 3



GLAD: Kolmogorov’s 4/5 Law and Lagragian Structure functions:

Grain of salt: E(k ) ∼ k−5/3 does not imply 3D turbulence.

4/5 Law: ’Exact’ Relation:

(strong isotropy)

〈(δv3
l )〉 = −4

5
εr

I S1 =⇒ energy cascade(?)

I Value of ε comparable to
microstructure?
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GLAD: Kolmogorov’s 4/5 Law and Lagragian Structure functions:

Lagrangian structure
functions:

Sp(τ) = 〈(vl(t + τ) − vl(t))p〉

I Inertial range: τk � τ� T :

Sp(τ) = g(ε, τ)

S2(τ) ∼ ετ
I Dissipation in S1 > C1.
I Inertial range τ ∼ O(hours).
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GLAD: Difference between S1 and Cyclone

Absolute Dispersion: Taylor 1921

y(t ,a) = x(t ,a)−a =

∫ t

0
v(t ′)dt ′

Lagrangian velocity correlation:

〈v2〉R(τ) = 〈v(τ)v(0)〉

〈y2(t)〉 = 2〈v2〉
∫ t

0
(t−τ)R(τ)dτ

TL =

∫ ∞

0
R(τ)dτ

〈y2(t)〉 =

{ 〈v2〉t2 t � TL
〈2v2〉tTL t > TL

S1 C1

TL ≈ TL

〈v2〉 < 〈v2〉
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GLAD: Difference between S1 and Cyclone

Similar absolute
dispersion.
Distinctly different
relative dispersion &
spectra.
Different forcing?
Frequency spectra of

S2(τ) = 〈(vl(t+τ)−vl(t))2〉

Strong inertial signal in
difference spectrum.
See Emanuel Coelho
(tomorrow).

S1 C1
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Summary: Turbulence at ocean surface from GLAD

Canyon launches S1 (S2):

S2(r) ∼ r2/3, r ≤ (2 − 3)km

I Two point statistics (scale dependent relative dispersion, Eulerian &
Lagrangian structure functions, timescales) entirely consistent with
forward cascade of energy.

I S1: ∼constant ε in inertial range: r < 5km.

Cyclone:
S2(r) ∼ r1, r ≤ ∼ 10km

I Two point statistics clearly inconsistent with steep (β ≥ 3) spectra.
I Not classical 2D, geostrophic turbulence.

Local dispersion regime in all cases.



Questions: Grains of salt

Homogeneous & Isotropic?
I Can be readily checked.

I Will do so, Monday.

Statistics?
I Need error bars, badly.
I Highly non-gaussian statistics.

Physics? (Especially in S1/S2 launches.)
I Energy input at inertial radius⇒ forward cascade through

submesoscales (?)

I Random inertial waves⇒ E(k ) ∼ k−5/3(?)
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