Nek5000 and Spectral Element Tutorial

Paul Fischer Mathematics and Computer Science Division Argonne National Laboratory

Joint work with:

Christos Frouzakis

Stefan Kerkemeier

Katie Heisey

Frank Loth

James Lottes

Elia Merzari

Aleks Obabko

Tamay Ozgokmen

David Pointer

Philipp Schlatter

Ananias Tomboulides U. Thessaloniki

and many others...

ETHZ

ETHZ / ANL

ANL

U. Akron

ANL / Oxford

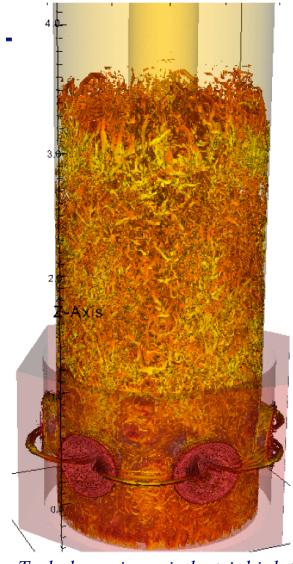
ANL

ANL

U. Miami

ANL

KTH



Turbulence in an industrial inlet.

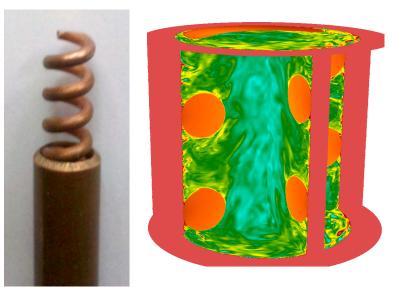
Overview

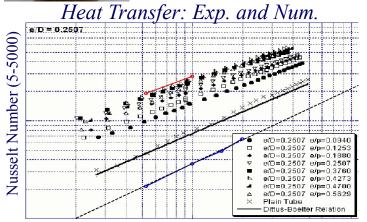
0. Background

- I. Scalable simulations of turbulent flows
 - Discretization
 - Solvers
 - Parallel Implementation
- II. A quick demo...

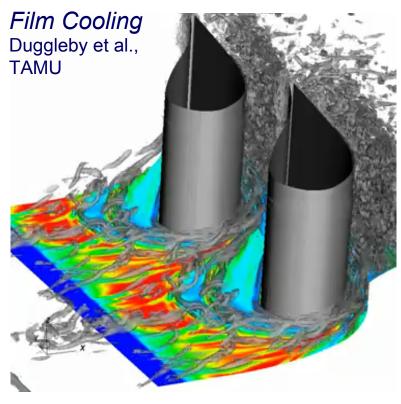
Recent SEM-Based Turbulence Simulations

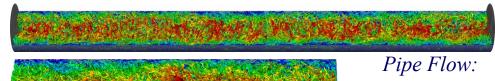
Enhanced Heat Transfer with Wire-Coil Inserts w/ J. Collins, ANL





Reynolds Number (1000-200,000)





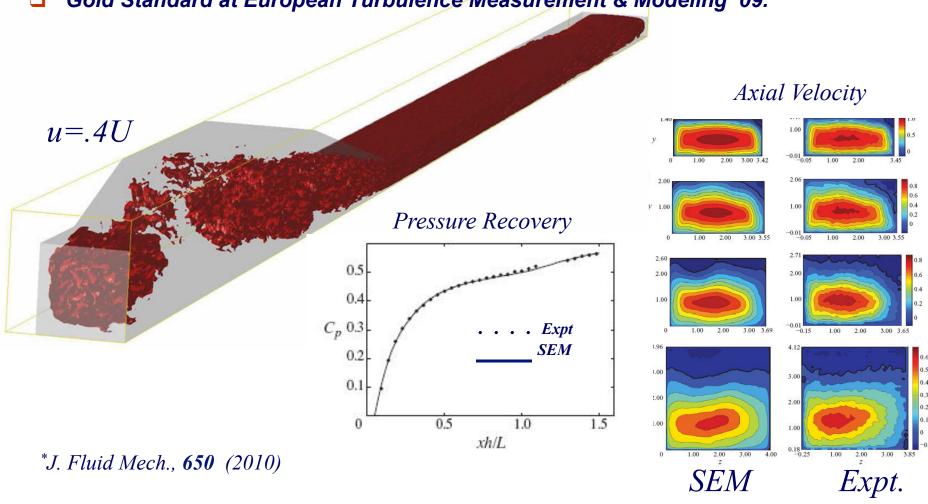
 $Re_{\tau} = 550$

 $Re_{\tau} = 1000$

G. El Khoury, KTH

Validation: Separation in an Asymmetric Diffuser Johan Ohlsson*, KTH

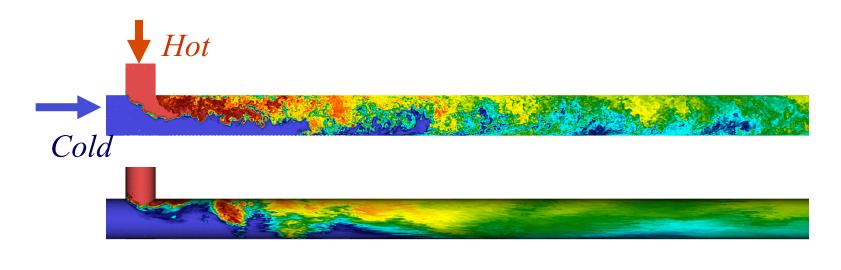
- Challenging high-Re case with flow separation and recovery
- □ DNS at Re=10,000: E=127750, N=11, 100 convective time units
- Comparison with experimental results of Cherry et al.
- Gold Standard at European Turbulence Measurement & Modeling '09.



OECD/NEA T-Junction Benchmark

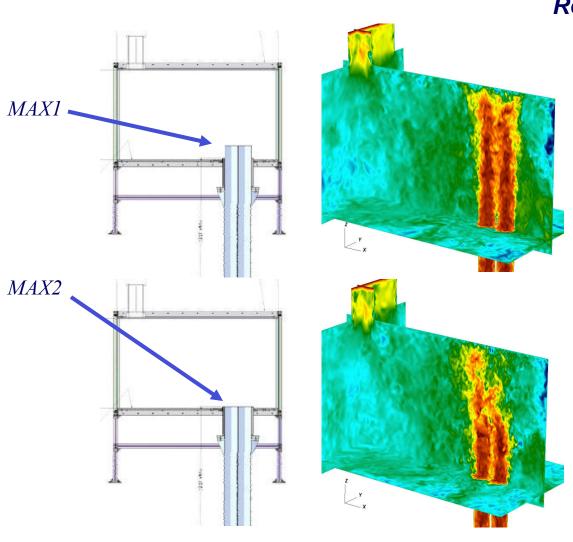
F., Obabko, Tautges, Caceres

- E=62000 spectral elements of order N=7 (n=21 million)
 - Mesh generated with CUBIT
- Subgrid dissipation modeled with low-pass spectral filter
- 1 Run: 24 hours on 16384 processors of BG/P (850 MHz) \sim 33x slower than uRANS
- \blacksquare SEM ranked #1 (of 29) in thermal prediction.



Centerplane, side, and top views of temperature distribution

LES Predicts Major Difference in Jet Behavior for Minor Design Change



Results:

- Small perturbation yields O(1) change in jet behavior
- Unstable jet, with lowfrequency (20 – 30 s) oscillations
- Visualization shows change due to jet / cross-flow interaction
- MAX2 results NOT predicted by RANS

Nek5000: Scalable Open Source Spectral Element Code

Developed at MIT in mid-80s

(Patera, F., Ho, Ronquist)

- Spectral Element Discretization: High accuracy at low cost
- Tailored to LES and DNS of turbulent heat transfer, but also supports
 - Low-Mach combustion, MHD, conjugate heat transfer, moving meshes
 - New features in progress: compressible flow (Duggleby), adjoints, immersed boundaries (KTH)
- Scaling: 1999 Gordon Bell Prize; Scales to over a million MPI processes.
- Current Verification and validation:
 - > 900 tests performed after each code update
 - > 200 publications based on Nek5000
 - > 175 users since going open source in 2009
 - > ...

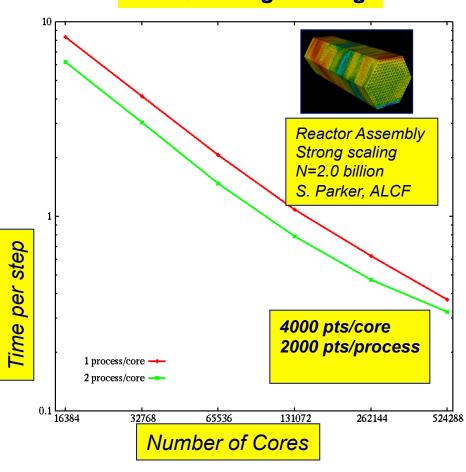
Scaling to a Million Processes

w / Scott Parker, ALCF

217 Pin Problem, N=9, E=3e6:

- 2 billion points
- BGQ 524288 cores
 - 1 or 2 ranks per core
- 60% parallel efficiency at1 million processes
- 2000 points/process
 - → Reduced time to solution for a broad range of problems

BG/Q Strong Scaling



Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of small features (size λ) over distances L >> λ . If speed ~ 1, then t_{final} ~ L/ λ .

Dispersion errors accumulate linearly with time:

□ For fixed final error \mathcal{E}_f , require: numerical dispersion error $\sim (\lambda/L)\mathcal{E}_f$, << 1.

Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of small features (size λ) over distances L >> λ . If speed ~ 1, then t_{final} ~ L/ λ .

Dispersion errors accumulate linearly with time:

□ For fixed final error \mathcal{E}_f , require: numerical dispersion error $\sim (\lambda/L)\mathcal{E}_f$, << 1.

High-order methods can efficiently deliver small dispersion errors.

(Kreiss & Oliger 72, Gottlieb et al. 2007)

Our objective is to realize the advantage of high-order methods, at low-order costs.

Motivation for High-Order

High-order accuracy is uninteresting unless

- Cost per gridpoint is comparable to low-order methods
- ☐ You are interested in simulating interactions over a broad range of scales...

Precisely the type of inquiry enabled by HPC and leadership class computing facilities.

Incompressible Navier-Stokes Equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

- Key algorithmic / architectural issues:
 - Unsteady evolution implies many timesteps, significant reuse of preconditioners, data partitioning, etc.
 - Div u = 0 implies long-range global coupling at each timestep
 → iterative solvers
 communication intensive
 - opportunity to amortize adaptive meshing, etc.
 - Small dissipation → large number of scales → large number of gridpoints for high Reynolds number Re

Navier-Stokes Time Advancement

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

- Nonlinear term: explicit
 - \square k th-order backward difference formula / extrapolation (k =2 or 3)
 - \square k th-order characteristics (Pironneau '82, MPR '90)
- Linear Stokes problem: pressure/viscous decoupling:
 - □ 3 Helmholtz solves for velocity ("easy" w/ Jacobi-precond.CG)
 - □ (consistent) Poisson equation for pressure *(computationally dominant)*
- For LES, apply grid-scale spectral filter (F. & Mullen 01, Boyd '98)
 − in spirit of HPF model (Schlatter 04)

Timestepping Design

- ☐ Implicit:
 - symmetric and (generally) linear terms,
 - fixed flow rate conditions
- Explicit:
 - nonlinear, nonsymmetric terms,
 - user-provided rhs terms, including
 - Boussinesq and Coriolis forcing
- Rationale:
 - \Box div $\mathbf{u} = 0$ constraint is fastest timescale
 - □ Viscous terms: explicit treatment of 2^{nd} -order derivatives $\rightarrow \Delta t \sim O(\Delta x^2)$
 - □ Convective terms require only $\Delta t \sim O(\Delta x)$
 - □ For high Re, temporal-spatial accuracy dictates $\Delta t \sim O(\Delta x)$
 - □ Linear symmetric is "easy" nonlinear nonsymmetric is "hard"

BDF2/EXT2 Example

Consider the convection-diffusion equation,

$$\frac{\partial u}{\partial t} + \mathbf{c} \cdot \nabla u = \nu \nabla^2 u.$$

Discretize in space:

$$B\frac{d\underline{u}}{dt} + C\underline{u} = -\nu A\underline{u}, \qquad (A \text{ is SPD})$$

Evaluate each term at t^n according to convenience:

$$B\frac{d\underline{u}}{dt}\Big|_{t^n} = B\frac{3\underline{u}^n - 4\underline{u}^{n-1} + \underline{u}^{n-2}}{2\Delta t} + O(\Delta t^2)$$

$$C\underline{u}\Big|_{t^n} = 2C\underline{u}^{n-1} - C\underline{u}^{n-2} + O(\Delta t^2)$$

$$\nu A \underline{u} \Big|_{t^n} = \nu A \underline{u}^n$$

BDFk/EXTk

- BDF3/EXT3 is essentially the same as BDF2/EXT2
 - \bigcirc O(\triangle t³) accuracy
 - essentially same cost
 - accessed by setting Torder=3 (2 or 1) in .rea file
- □ For convection-diffusion and Navier-Stokes, the "EXTk" part of the timestepper implies a CFL (Courant-Friedrichs-Lewy) constraint

$$\max_{\mathbf{x} \in \Omega} \frac{|\mathbf{u}| \Delta t}{\Delta x} \approx 0.5$$

- □ For the spectral element method, $\Delta x \sim N^{-2}$, which is restrictive.
 - We therefore often use a characteristics-based timestepper.(IFCHAR = T in the .rea file)

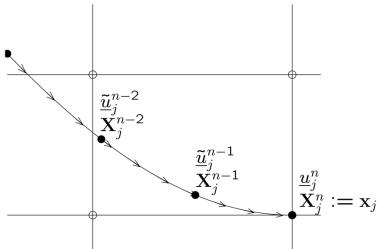
Characteristics Timestepping

Apply BDFk to material derivative, e.g., for k=2:

$$\frac{Du}{Dt} := \frac{\partial u}{\partial t} + \mathbf{c} \cdot \nabla u$$

$$= \frac{3u^n - 4\tilde{u}^{n-1} + \tilde{u}^{n-2}}{2\Delta t} + O(\Delta t^2)$$

lacksquare Amounts to finite-differencing along the characteristic leading into x_j



Characteristics Timestepping

$$ightharpoonup \Delta t \ can \ be >> \Delta t_{CFL}$$
 (e.g., $\Delta t \sim 5$ -10 x Δt_{CFL})

□ Don't need <u>position</u> (e.g., X_j^{n-1}) of characteristic departure point, only the <u>value</u> of $u^{n-1}(x)$ at these points.

These values satisfy the pure hyperbolic problem:

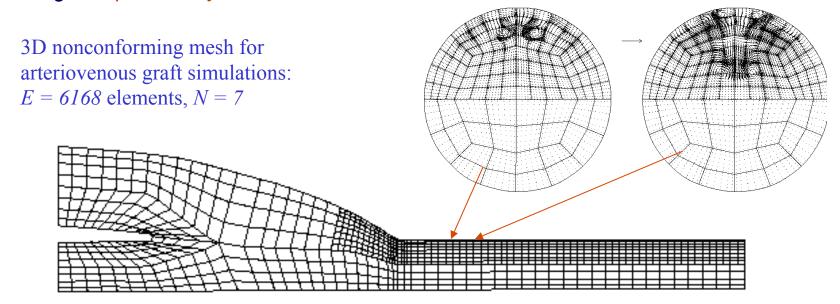
$$\frac{\partial \tilde{u}}{\partial s} + \mathbf{c} \cdot \nabla \tilde{u} = 0, \quad s \in [t^{n-1}, t^n]$$
$$\tilde{u}(\mathbf{x}, t^{n-1}) := u^{n-1}(\mathbf{x}),$$

which is solved via explicit timestepping with $\Delta s \sim \Delta t_{CFL}$

Spatial Discretization: Spectral Element Method

(Patera 84, Maday & Patera 89)

- Variational method, similar to FEM, using GL quadrature.
- Domain partitioned into E high-order quadrilateral (or hexahedral) elements (decomposition may be nonconforming - localized refinement)
- Trial and test functions represented as Nth-order tensor-product polynomials within each element. ($N \sim 4 15$, typ.)
- \blacksquare EN^3 gridpoints in 3D, EN^2 gridpoints in 2D.
- \square Converges *exponentially fast* with N for smooth solutions.

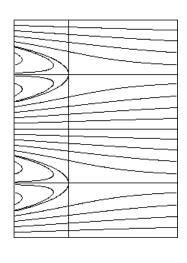


Mathematics and Computer Science Division, Argonne National Laboratory

Spectral Element Convergence: Exponential with N

Exact Navier-Stokes Solution (Kovazsnay '48)

- 4 orders-of-magnitude error reduction when doubling the resolution in each direction
- 10 $\frac{\left\|\mathbf{v}-\mathbf{v}_{N}\right\|_{H^{1}}}{\left\|\mathbf{v}\right\|_{H^{1}}}$ N



Benefits realized through tight data-coupling.

 $1 - e^{\lambda x} \cos 2\pi y$ $\frac{\lambda}{2\pi}e^{\lambda x}\sin 2\pi y$

- For a given error,
 - Reduced number of gridpoints
 - Reduced memory footprint.
 - Reduced data movement.

$$v_y = \frac{\lambda}{2\pi} e^{\lambda x} \sin 2\pi y$$

$$\lambda := \frac{Re}{2} - \sqrt{\frac{Re^2}{4} + 4\pi^2}$$

Spectral Element Discretization

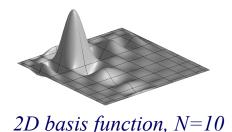
$$u_t + \mathbf{c} \cdot \nabla u = \nu \nabla^2 u$$

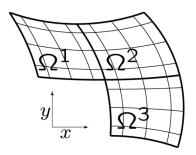
Find $u \in X_0^N \subset H_0^1$ such that

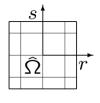
$$(v, u_t)_N + (v, \mathbf{c} \cdot \nabla u)_M = \nu(\nabla v, \nabla u)_N \ \forall v \in X_0^N,$$

$$ullet (f,g)_M := \sum_{j=0}^M
ho_j^M f(\xi_j^M) g(\xi_j^M), \quad ext{(1-D, $\Omega = [-1,1])}$$

ullet ξ_j^M , ho_j^M —Mth-order Gauss-Legendre points, weights.







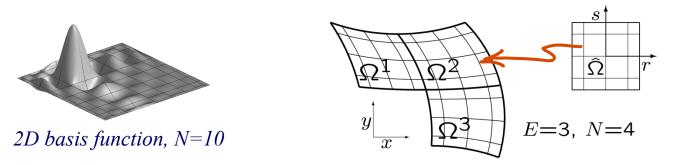
E=3, N=4

Spectral Element Basis Functions

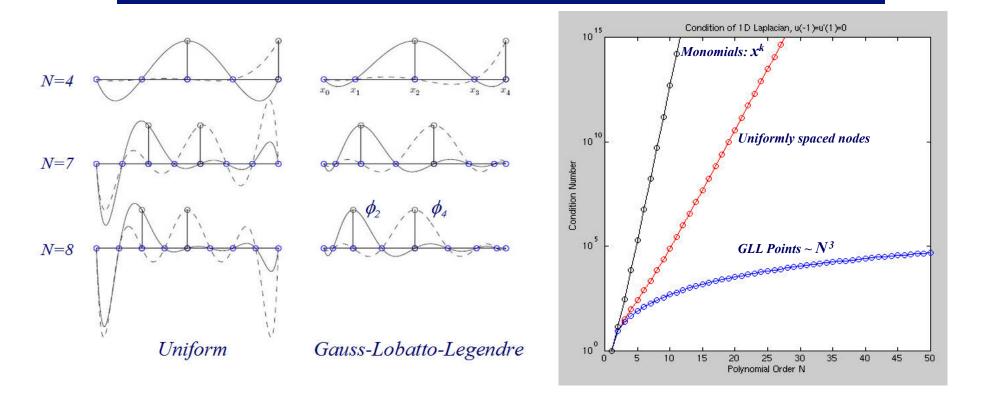
Tensor-product nodal basis:

In model basis:
$$u(x,y)|_{\Omega^e}=\sum\limits_{i=0}^N\sum\limits_{j=0}^Nu^e_{ij}\,h_i(r)\,h_j(s)$$
 $h_i(r)\in\mathcal{P}_N(r),\qquad h_i(\xi_j)=\delta_{ij}$

- \Box ξ_j = Gauss-Lobatto-Legendre quadrature points:
 - stability (*not* uniformly distributed points)
 - allows pointwise quadrature (for *most* operators...)
 - easy to implement BCs and C⁰ continuity



Influence of Basis on Conditioning



- Monomials and Lagrange interpolants on uniform points exhibit exponentional growth in condition number.
- With just a 7x7 system the monomials would lose 10 significant digits (of 15, in 64-bit arithmetic).

Attractive Feature of Tensor-Product Bases (quad/hex elements)

□ Local tensor-product form (2D),

$$u(r,s) = \sum_{i=0}^{N} \sum_{j=0}^{N} u_{ij} h_i(r) h_j(s), \quad h_i(\xi_p) = \delta_{ip}, \ h_i \in \mathbb{P}_N$$

allows derivatives to be evaluated as **fast** matrix-matrix products:

$$\left. \frac{\partial u}{\partial r} \right|_{\xi_i, \xi_j} = \sum_{p=0}^{N} u_{pj} \left. \frac{dh_p}{dr} \right|_{\xi_i} = \sum_{p} \widehat{D}_{ip} u_{pj} =: D_r \underline{u}$$

Fast Operator Evaluation

Local matrix-free stiffness matrix in 3D on Ω^e ,

$$A^{e}\underline{u}^{e} = \begin{pmatrix} D_{r} \\ D_{s} \\ D_{t} \end{pmatrix}^{T} \begin{pmatrix} G_{rr}^{e} & G_{rs}^{e} & G_{rt}^{e} \\ G_{rs}^{e} & G_{ss}^{e} & G_{st}^{e} \\ G_{rt}^{e} & G_{st}^{e} & G_{tt}^{e} \end{pmatrix} \begin{pmatrix} D_{r} \\ D_{s} \\ D_{t} \end{pmatrix} \underline{u}^{e} \qquad \begin{array}{c} \text{Matrix free form :} \\ \cdot 7N^{3} \text{ memory ref's.} \\ \cdot 12N^{4} + 15N^{3} \text{ op's.} \end{array}$$

$$D_r = (I \otimes I \otimes \hat{D}) \qquad G_{rs}^e = J^e \circ B \circ \left(\frac{\partial r}{\partial x}\frac{\partial s}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial s}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial s}{\partial z}\right)^e$$

- □ Operation count is only $O(N^4)$ not $O(N^6)$ [Orszag '80]
- $lue{}$ Work is dominated by fast matrix-matrix products (D_r , D_s , D_t)
- Memory access is 7 x number of points
 - because of GLL quadrature, G_{rr} , G_{rs} , etc., are diagonal

Expand in modal basis:

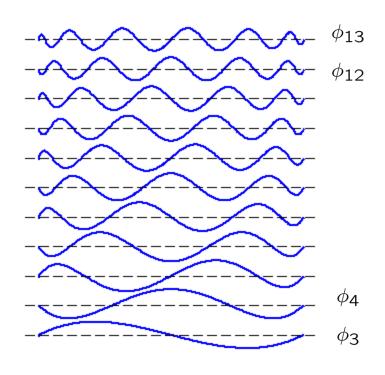
$$u(x) = \sum_{k=0}^{N} \hat{u}_k \, \phi_k(r)$$

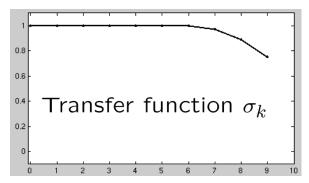
Set filtered function to:

$$\bar{u}(x) = \hat{F}(u) = \sum_{k=0}^{N} \sigma_k \hat{u}_k \phi_k(r)$$

- Spectral convergence and continuity preserved. (Coefficients decay exponentially fast.)
- In higher space dimensions:

$$F = \hat{F} \otimes \hat{F} \otimes \hat{F}$$





Filtering Cures High Wavenumber Instabilities

Free surface example:

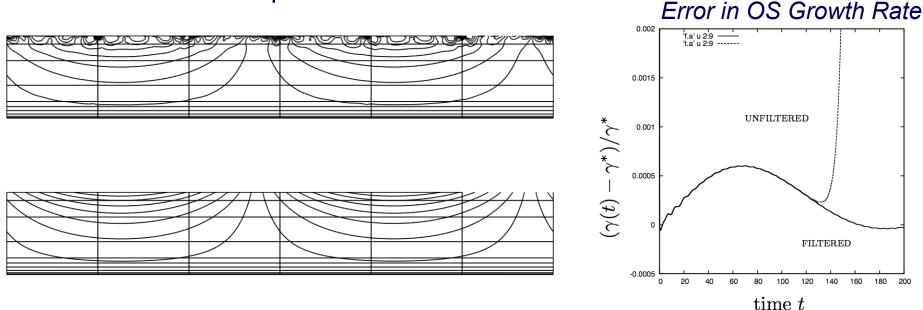
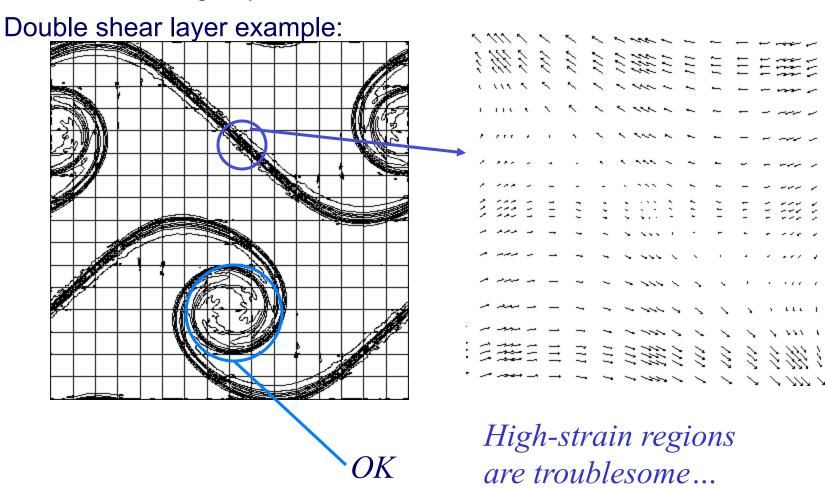


Figure 6: Eigenmodes for free-surface film flow: (left, top) contours of vertical velocity v for unfiltered and (left, bottom) filtered solution at time t = 179.6; (right) error in growth rate vs. t.

¹⁰Instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers. Giannakis, D., Rosner, R., & Fischer, P.F. 2009, J. Fluid Mech., 636, 217-277

Dealiasing

When does straight quadrature fail ??



When Does Quadrature Fail?

Consider the model problem:

$$\frac{\partial u}{\partial t} = -\mathbf{c} \cdot \nabla u$$

Weighted residual formulation: $B\frac{d\underline{u}}{dt} = -C\underline{u}$

$$B\frac{d\underline{u}}{dt} = -C\underline{u}$$

$$B_{ij} = \int_{\Omega} \phi_i \phi_j \, dV = \text{symm. pos. def.}$$

$$\begin{split} C_{ij} &= \int_{\Omega} \phi_i \, \mathbf{c} \cdot \nabla \phi_j \, dV \\ &= - \int_{\Omega} \phi_j \, \mathbf{c} \cdot \nabla \phi_i \, dV - \int_{\Omega} \phi_j \phi_j \nabla \cdot \, \mathbf{c} \, dV \\ &= \text{skew symmetric, if } \nabla \cdot \, \mathbf{c} \equiv 0. \end{split}$$

$$B^{-1}C \longrightarrow \text{imaginary eigenvalues}$$

Discrete problem should never blow up.

When Does Quadrature Fail?

Weighted residual formulation vs. spectral element method:

$$C_{ij} = (\phi_i, \mathbf{c} \cdot \nabla \phi_j) = -C_{ji}$$

$$\tilde{C}_{ij} = (\phi_i, \mathbf{c} \cdot \nabla \phi_j)_N \neq -\tilde{C}_{ji}$$

This suggests the use of over-integration (dealiasing) to ensure that skew-symmetry is retained

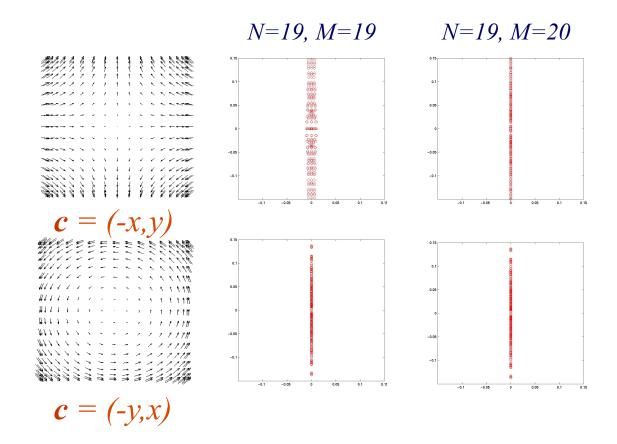
$$C_{ij} = (J\phi_i, (J\mathbf{c}) \cdot J\nabla\phi_j)_M$$

$$J_{pq} := h_q^N(\xi_p^M)$$
 interpolation matrix (1D, single element)

Aliased / Dealiased Eigenvalues: $u_t + \mathbf{c} \cdot \nabla u = 0$

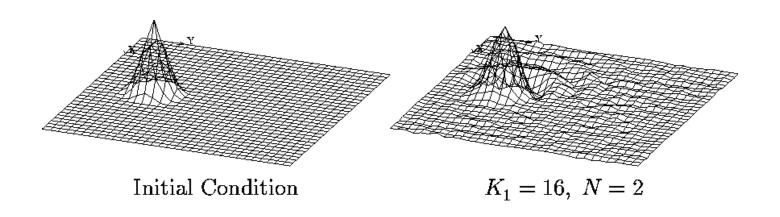
- Velocity fields model first-order terms in expansion of straining and rotating flows.
 - Rotational case is skew-symmetric
 - Over-integration restores skew-symmetry

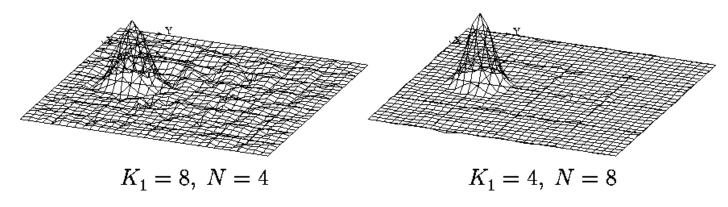
(Malm et al, JSC 2013)



Mathematics and Computer Science Division, Argonne National Laboratory

Excellent transport properties, even for non-smooth solutions

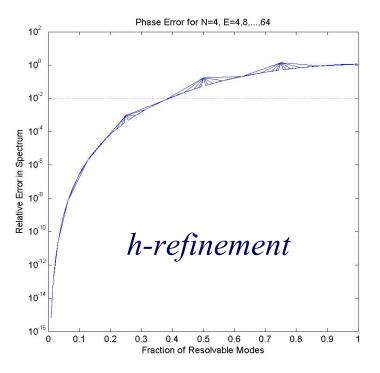


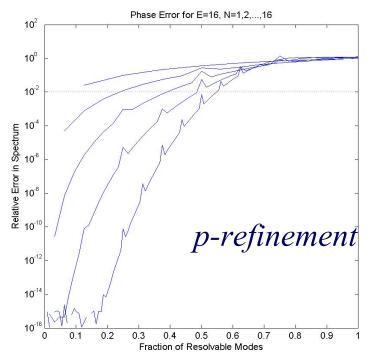


Convection of non-smooth data on a 32x32 grid ($K_1 \times K_1$ spectral elements of order N).

(cf. Gottlieb & Orszag 77)

Relative Phase Error for h vs. p Refinement: $u_t + u_x = 0$





- \square x- $axis = k / k_{max}$, $k_{max} := n / 2$ (Nyquist)
- Fraction of resolvable modes increased only through p-refinement
 - dispersion significantly improved w/ exact mass matrix (Guermond, Ainsworth)
- □ Polynomial approaches saturate at $k/k_{max} = 2/\pi$

 $\rightarrow N = 8-16 \sim$ point of marginal return

Impact of Order on Costs

□ To leading order, cost scales as number of gridpoints, regardless of approximation order. WHY?

Impact of Order on Costs

- To leading order, cost scales as number of gridpoints, regardless of SEM approximation order. WHY?
- Consider Jacobi PCG as an example:

$$\underline{z} = D^{-1} \underline{r}$$

$$\underline{r} = \underline{r}^{t} \underline{z}$$

$$\underline{p} = z + \beta \underline{p}$$

$$\underline{w} = A \underline{p}$$

$$\sigma = \underline{w}^{t} \underline{p}$$

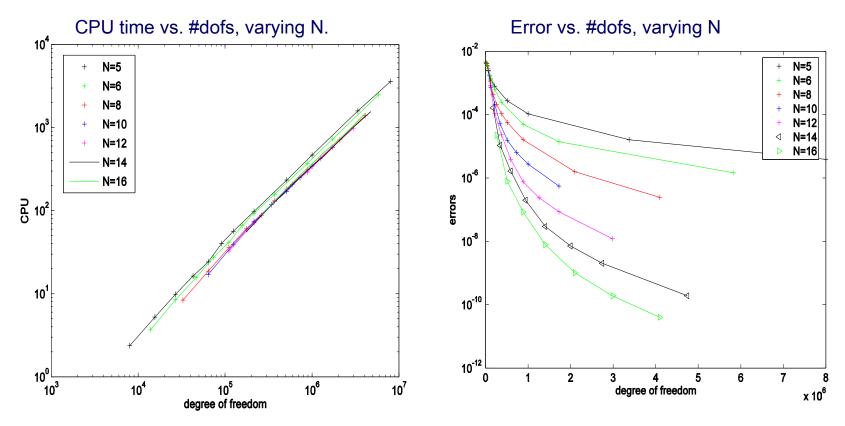
$$\underline{x} = \underline{x} + \alpha \underline{p}$$

$$\underline{r} = \underline{r} - \alpha \underline{p}$$

- Six O(n) operations with order unity computational intensity.
- One matrix-vector product dependent on approximation order
- Reducing n is a direct way to reduce data movement.

Cost vs. Accuracy: Electromagnetics Example

- For SEM, memory scales as number of gridpoints, n.
- Work scales as nN, but is in form of (fast) matrix-matrix products.



Periodic Box; 32 nodes, each with a 2.4 GHz Pentium Xeon

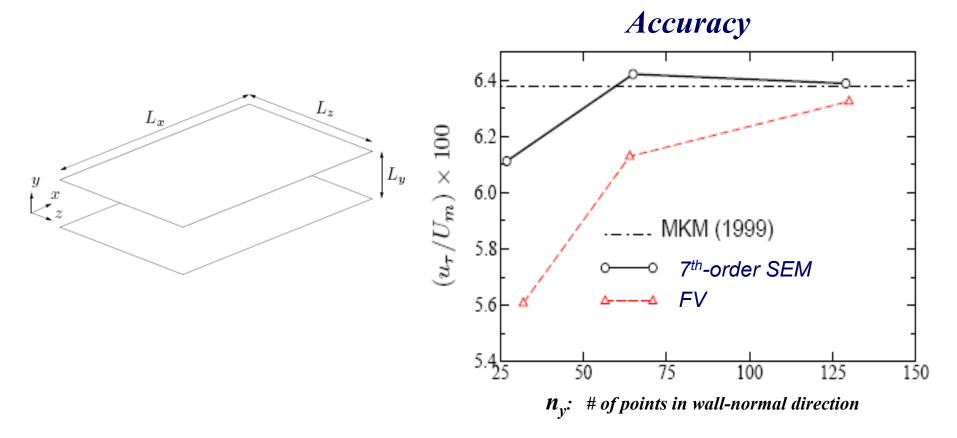
What About Nonlinear Problems?

Are the high-order phase benefits manifest in linear problems evident in turbulent flows with nontrivial physical dispersion relations?

Nonlinear Example: NREL Turbulent Channel Flow Study

Sprague et al., 2010

Accuracy: Comparison to several metrics in turbulent DNS, $Re_{\tau} = 180$ (MKM'99)

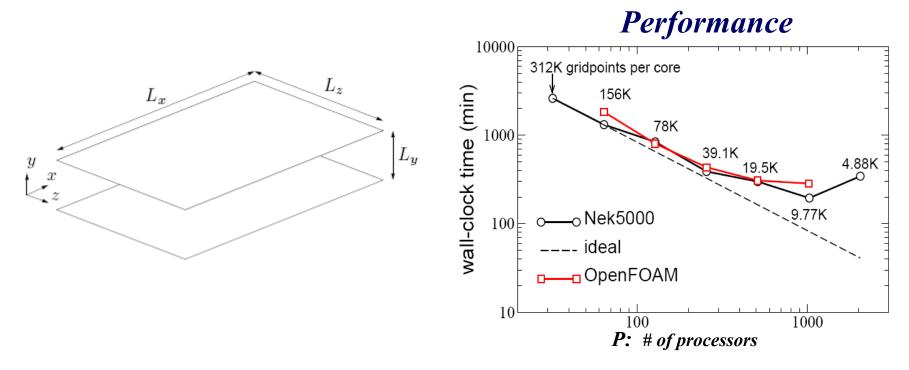


□ Results: 7th-order SEM needs an *order-of-magnitude* fewer points than 2nd-order FV.

Nonlinear Example: NREL Turbulent Channel Flow Study

Sprague et al., 2010

Test case: Turbulent channel flow comparison to DNS of MKM '99.



Costs: Nek5000 & OpenFOAM have the same cost per gridpoint

Overview

- I. Scalable simulations of turbulent flows
 - Discretization
 - Solvers
 - Parallel Implementation
- II. A quick demo...

Scalable Linear Solvers

- Key considerations:
 - Bounded iteration counts as n→infinity
 - Cost that does not scale prohibitively with number of processors, P
- Our choice:
 - □ Projection in time: extract available temporal regularity in $\{\underline{p}^{n-1}, \underline{p}^{n-2}, ..., \underline{p}^{n-k}\}$
 - CG or GMRES, preconditioned with multilevel additive Schwarz
 - Coarse-grid solve:
 - XX^T projection-based solver
 - □ single V-cycle of well-tuned AMG (*J. Lottes, 2010*)

Projection in Time for $A\underline{x}^n = \underline{b}^n$ (A - SPD)

Given
$$\cdot \underline{b}^n$$

 $\cdot \{\underline{\tilde{x}}_1, \dots, \underline{\tilde{x}}_l\}$ satisfying $\underline{\tilde{x}}_i^T A \underline{\tilde{x}}_j = \delta_{ij}$,

$$\bullet \quad \cdot \text{ Set } \underline{\bar{x}} := \sum \alpha_i \underline{\tilde{x}}_i, \quad \alpha_i = \underline{\tilde{x}}_i^T \underline{b} \qquad \text{ (best fit solution)}$$

$$\cdot \operatorname{Set} \Delta \underline{b} := \underline{b}^n - A\underline{\bar{x}}$$

Solve
$$A\Delta \underline{x} = \Delta \underline{b}$$
 to $tol \epsilon$ (black box solver)

$$\cdot \underline{x}^n := \underline{\bar{x}} + \Delta \underline{x}$$

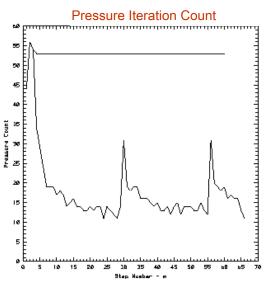
• If
$$(l = l_{\text{max}})$$
 then (update X^l)
$$\frac{\tilde{x}_1 = \underline{x}^n/||\underline{x}^n||_A}{l = 1}$$

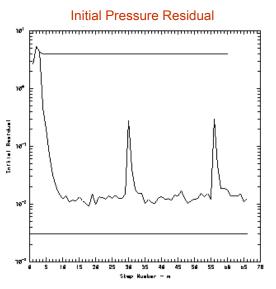
else

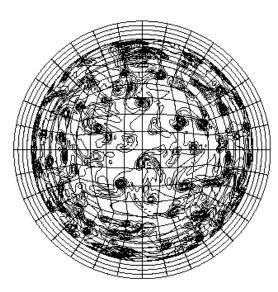
$$\frac{\tilde{x}_{l+1} = (\Delta \underline{x} - \Sigma \beta_i \tilde{x}_i) / (\Delta \underline{x}^T A \Delta \underline{x} - \Sigma \beta_i^2)^{\frac{1}{2}}, \quad \beta_i = \tilde{x}_i A \Delta \underline{x}}{l = l+1}$$
endif

Initial guess for $A\underline{p}^n = \underline{g}^n$ via projection onto previous solutions

■ Results with/without projection (1.6 million pressure nodes):







- \bullet 4 fold reduction in iteration count, 2 4 in typical applications
- ☐ Similar results for pulsatile carotid artery simulations 108-fold reduction in initial residual

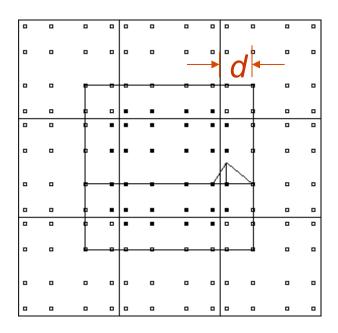
Scalable Linear Solvers

- Key considerations:
 - Bounded iteration counts as n→infinity
 - Cost that does not scale prohibitively with number of processors, P
- Our choice:
 - □ Projection in time extract available temporal regularity in $\{\underline{p}^{n-1}, \underline{p}^{n-2}, ..., \underline{p}^{n-k}\}$
 - □ CG or GMRES, preconditioned with multilevel additive Schwarz
 - Coarse-grid solve:
 - □ FOR SMALL PROBLEMS: XX^T projection-based solver (default).
 - □ FOR LARGE PROBLEMS: single V-cycle of well-tuned AMG (Lottes)

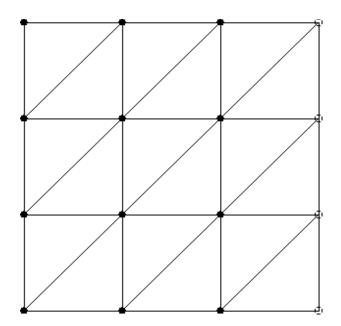
Multilevel Overlapping Additive Schwarz Smoother

(Dryja & Widlund 87, Pahl 93, F 97, FMT 00, F. & Lottes 05)

$$\underline{z} = M\underline{r} = \sum_{e=1}^{E} R_e^T A_e^{-1} R_e \underline{r} + R_0^T A_0^{-1} R_0 \underline{r}$$



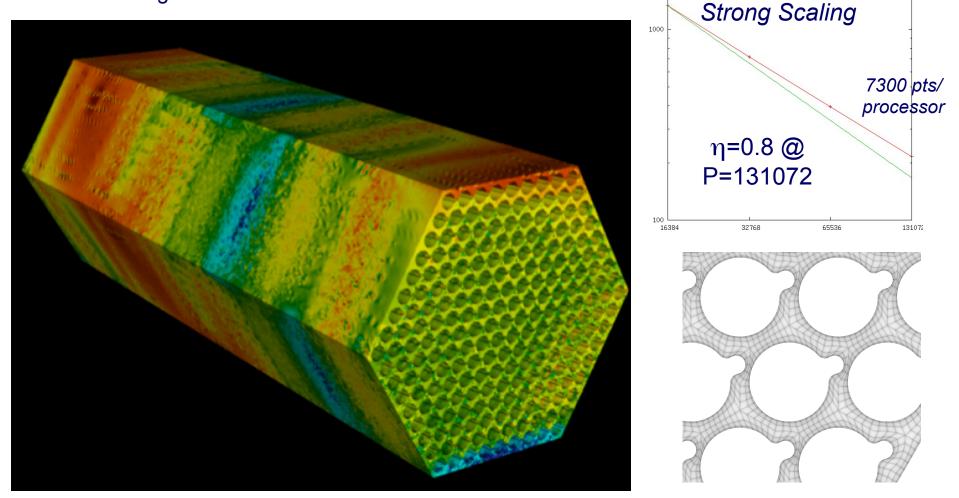
Local Overlapping Solves: FEM-based Poisson problems with homogeneous Dirichlet boundary conditions, A_e .



Coarse Grid Solve: Poisson problem using linear finite elements on entire spectral element mesh, A_0 (GLOBAL).

Scaling Example: Subassembly with 217 Wire-Wrapped Pins

- □ 3 million 7th-order spectral elements (n=1.01 billion)
- 16384–131072 processors of IBM BG/P
- □ 15 iterations per timestep; 1 sec/step @ P=131072
- □ Coarse grid solve < 10% run time at P=131072



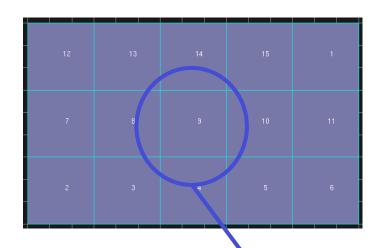
Mathematics and Computer Science Division, Argonne National Laboratory

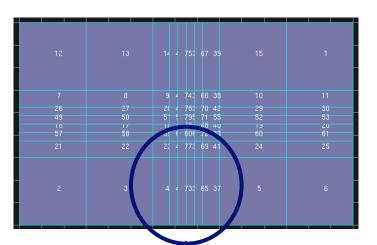
Some Limitations of Nek5000

- No steady-state NS or RANS:
 - unsteady RANS under development / test Aithal
- Lack of monotonicity for under-resolved simulations
 - □ limits, e.g., LES + combustion
 - Strategies under investigation: DG (Fabregat), Entropy Visc.
- Meshing complex geometries:
 - fundamental: meshing always a challenge;
 - hex-based meshes intrinsically anisotropic
 - technical: meshing traditionally not supported as part of advanced modeling development

Mesh Anisotropy

A common refinement scenario (somewhat exaggerated):



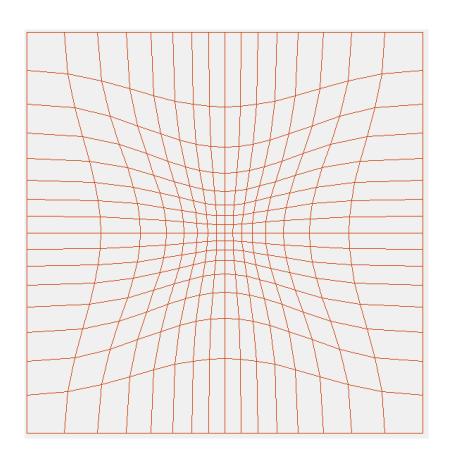


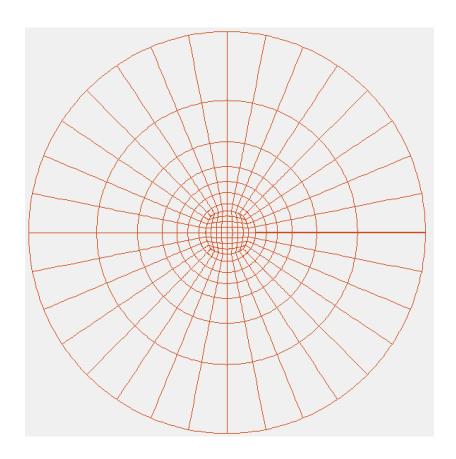
Refinement in region of interest yields unwanted high-aspect-ratio cells.

Refinement propagation leads to

- unwanted elements in far-field
- high aspect-ratio cells that are detrimental to iterative solver performance (F. JCP' 97)

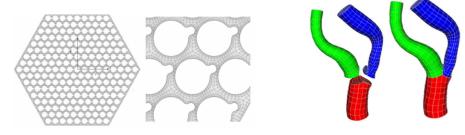
Alternative Mesh Concentration Strategies



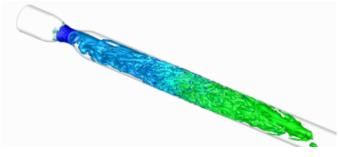


Meshing Options for More Complex Domains

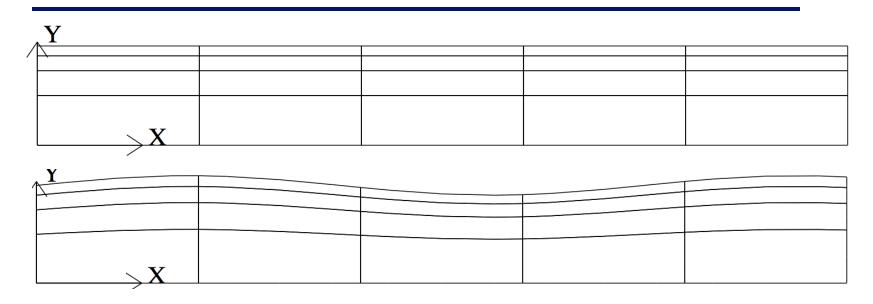
- genbox: unions of tensor-product boxes
- prenek: basically 2D + some 3D or 3D via extrusion (n2to3)
- ☐ Grow your own: 217 pin mesh via matlab; BioMesh



- □ 3rd party: CUBIT + MOAB, TrueGrid, Gambit, Star CD
- Morphing:



Morphing to Change Topography



```
do i=1,ntot
    argx = 2*pi*xm1(i,1,1,1)/lambda
    ym1(i,1,1,1) = ym1(i,1,1,1) + ym1(i,1,1,1)*A*sin(argx)
enddo
```

Stratified Flow Model

- Blocking phenomena Tritton
- *Implemented as a rhs forcing:*

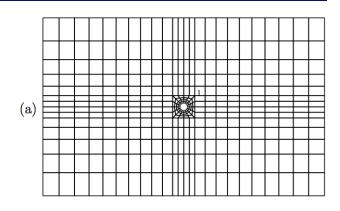
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} - \frac{1}{Fr^2} (\rho' - y) \mathbf{v}$$

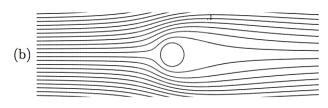
$$\nabla \cdot \mathbf{u} = 0$$

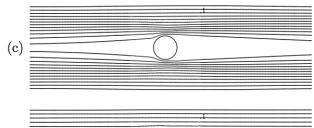
$$\frac{\partial \rho'}{\partial t} + \mathbf{u} \cdot \nabla \rho' = \frac{1}{PrRe} \nabla^2 \rho'.$$

```
subroutine userf (ix,iy,iz,ieg)
include 'SIZE'
include 'TOTAL'
include 'NEKUSE'

Fr2 = param(4) ! Froude number squared
ffx = 0.0
ffy = (temp - y) / Fr2
ffz = 0.0
return
end
```







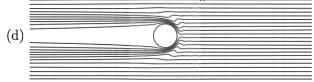


Figure 7: Examples of blocking phenomena in stratified flow at Re=10: (a) spectral element mesh, (E,N)=(384,7), and steady-state streamfunction distribution for (b) no stratification, (c) $Fr^{-2}=1000$, Pr=1, and (d) $Fr^{-2}=1000$, Pr=1000.

High Richardson Number Can Introduce Fast Time Scales

- Fast waves in stratified flow can potentially lead to additional temporal stability constraints.
- Also, must pay attention to reflection from outflow.(Same issue faced in experiments...)

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} - \frac{1}{Fr^2} (\rho' - y) \mathbf{y}$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \rho'}{\partial t} + \mathbf{u} \cdot \nabla \rho' = \frac{1}{PrRe} \nabla^2 \rho'.$$

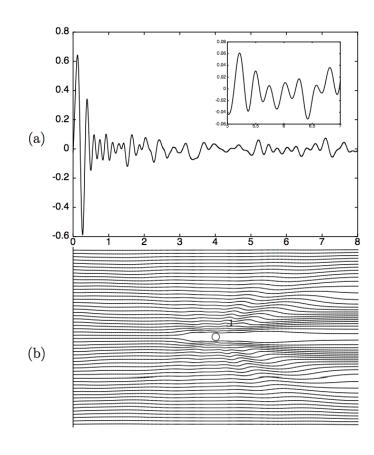
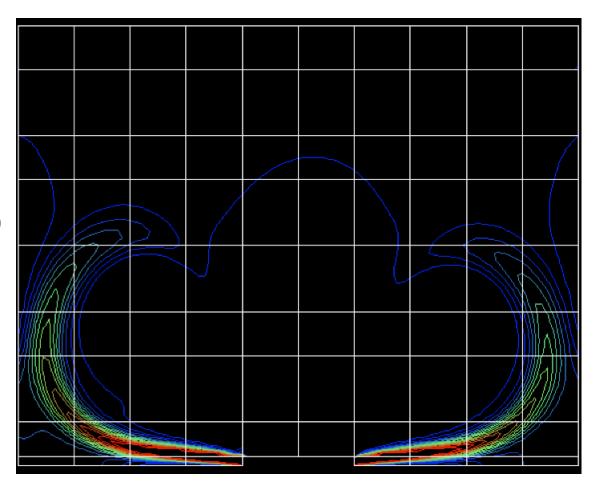


Figure 8: Wave-like response to sudden application of gravitation forcing for Fr^{-2} =1000, Pr = 1000: (a) time trace of v at point "1" indicated in (b); (b) instantaneous streamline pattern at t = 0.5.

Moving Mesh Examples

- peristaltic flow model nek5_svn/examples/peris
- 2D piston, intake stroke:(15 min. to set up and run)
- More recent 3D results by Schmitt and Frouzakis

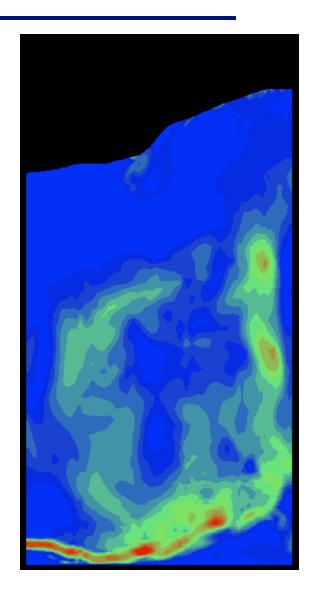


Moving Mesh Examples

☐ Free surface case

(Lee W. Ho, MIT Thesis, '89)

Nominally functional in 3D, but needs some development effort.



A (hopefully) Quick Demo

Thank You!