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What is UQ

Uncertainty Quantification revolves around:
• Identification: What are the uncertainty sources?,
• Characterization: aleatoric (intrisically random) or

epistemic (fixed but have unknown values)
Characterization may be scale dependent

• Forward Propagation: Propagate input uncertainty
through numerical model to calculate output uncertainty

• Inverse Propagation: Use observations/experiments to
correct input uncertainties

• Sensitivity Analysis: Which uncertainties contribute the
most to output uncertainties

• Reduction: Improve forecast by assimilating observations
UQ assesses confidence in model predictions and allows
resource allocation for fidelity improvements
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Quantifying Ocean Model Uncertainties

• Model equations
• Initial Conditions: Observation sparse in space-time
• Boundary Conditions

• Momentum, heat and fresh water fluxes
• Lateral Boundary Conditions in Regional Models
• Bottom boundary conditions

• Parameterization of small scale processes
• mixed layer and bottom boundary layer parameters
• bulk formula for air-sea fluxes

Predictive simulation requires careful assessment of all sources
of error and uncertainty
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UQ Approaches

• Many UQ approaches exist fulfilling specific needs.
• Emphasis here will be on representation of uncertain

variables
• Emphasis on Forward Propagation which enables analysis

and inverse propagation
• Topics centered on Generalized Polynomial Chaos

methods (reflecting the presentor biases and experience).
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What is Polynomial Chaos (PC)
PC combines probabilistic and approximation frameworks to
express dependency of model outputs on uncertain model
inputs
• Series representation:

M(x , t , ξ) ≈ MP
.

=
P∑

k=0

M̂k (x , t)ψk (ξ) (1)

• ξ: uncertain input characterized by its PDF ρ(ξ)
• M(x , t , ξ): model output aka observable
• M̂k (x , t): series coefficients
• ψk (ξ): basis (shape) functions in ξ-space

• Basic Questions
• How to choose ψk ?
• How to determine the coefficients M̂k ?
• Where to truncate the series?
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Benefit of functional representation
What can you do with a series?

• Sum series to interpolate in ξ-space
• series is computationally (much) cheaper than a complex

model
• can sum it millions of time to build histogram or effect

Monte Carlo sampling
• Integrate in ξ-space for statistical moments

• Mean: E [M] =

∫
Mρ(ξ)dξ =

∑
k

M̂k

∫
ρ(ξ)ψk (ξ)dξ

• Variance: var [M] =

∫ (∑
k

M̂kψk (ξ) − E [M]

)2

ρ(ξ)dξ

• Differentiate in ξ-space (no adjoint code!)

∂M
∂ξ

=
∑

k

M̂k
∂ψk

∂ξ

Series must be reliable to reap benefits



Uncertainty Quantification (UQ) What is Polynomial Chaos Forward Propagation and Analysis Bayesian Inference UQ-Initial Conditions

Example 1 of input uncertainties and ρ(ξ)

• Drag Coefficient is uncertain: CD = αCref
D

• α is a multiplicative factor, with α ∈ [αmin, αmax]
• Map it to standard interval −1 ≤ ξ ≤ 1
α = (αmax − αmin) ξ+1

2 + αmin

• If all values are equally likely than ρ(ξ) = 1
2 .

• To weigh an area more than others choose a beta
distribution:

ρ(ξ) =
(1 + ξ)α(1− ξ)β

2α+β+1B(α + 1, β + 1

E [ξ] =
α + 1

α + β + 2

var [ξ] =
(α + 1)(β + 1)

(α + β + 2)2(α + β + 3)
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Example 2 of input uncertainties and ρ(ξ)

Uncertainty in Initial Boundary Conditions via Empirical
Orthogonal Functions perturbations:

u(x ,0, ξ1, ξ2) = u(x ,0) +
[√

λ1U1ξ1 +
√
λ2U2ξ2

]
(2)

• (λk ,Uk ): are eigenvalues/eigenvectors of covariance
matrix obtained from free-run simulation

• u: unperturbed initial condition
• u(x ,0, ξ1, ξ2): Stochastic initial condition input
• The two independent uncertain variables are the modes

amplitudes: ξ1,2

• Uniform distributions: ρ(ξ1,2) = 1
2

• Gaussian distributions: ρ(ξ1,2) = e−
ξ2

1,2
2√

2π
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Polynomial Chaos Basis

ξ-distribution Domain weight ρ(ξ) basis ψk (ξ) parameter

Gauss (−∞,∞) e− ξ2
2√

2π
Hermite none

Gamma (0,∞) ξαe−ξ

Γ(α+1) Laguerre α > 1

Beta [−1,1] (1+ξ)α(1−ξ)β

2α+β+1B(α+1,β+1)
Jacobi α, β > 1

Uniform [−1,1] 1
2 Legendre none

• Inner Product in ξ-space:
〈
ψj , ψk

〉
=
∫
ψk (ξ)ψj(ξ) ρ(ξ)dξ

• Polynomial basis is orthonormal w.r.t. ρ(ξ):
〈
ψj , ψk

〉
= δi,j

• Input parameter domain and distribution often dictate the
most convenient basis.

〈
ψj , ψk

〉
= δi,j

• Wiener-Askey scheme provides a hierarchy of possible
continuous PC bases
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Normal Distribution
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• Most commonly used input distribution
• Support on (−∞,∞)
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Gamma Distribution
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• Useful to represent uncertainties in positive quantities.
• Support on (0,∞)
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Beta Distribution
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• Useful for uncertainties that varies between set quantities.
• Can be tailored to weigh some values more than others
• Support on [−1,1]
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Uniform Distribution
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• Useful for uncertainties with sharp bounds
• or not much is known about input distribution
• Support on [−1,1]
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Polynomial Chaos Basis
• Series: M(x , t , ξ) =

∑P
k=0 M̂k (x , t)ψk (ξ)

• Expectation:

E [ψk ] =

∫
ψk (ξ)ρ(ξ)dξ = 〈ψk , ψ0〉 = δk ,0

• mean:

E [M] =
P∑

k=0

uk (x , t)E [ψk (ξ)] = u0(x , t)

• Variance:

E
[
(M − E [M])2

]
=

P∑
k=1

M̂2
k (x , t)

• Covariance:

E [ (u − E [u]) (v − E [v ]) ] =
P∑

k=1

uk (x)vk (x , t)
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Multidimensional basis

Multi-dimensional basis functions Ψk (ξ1, ξ2, . . . , ξn) are tensor
products of 1D basis functions:

Ψk (ξ1, ξ2, . . . , ξn) = ψαk
1
(ξ1)ψαk

2
(ξ2) . . . ψαk

3
(ξn)

• 1D Legendre basis: L0(ξ) = 1, L1(ξ) = ξ, L2(ξ) = 3ξ2−1
2

• 2D Example
ψ0 = L0(ξ1)L0(ξ2) ψ2 = L0(ξ1)L1(ξ2) ψ5 = L0(ξ1)L2(ξ2) ψ9 = L0(ξ1)L3(ξ2)
ψ1 = L1(ξ1)L0(ξ2) ψ4 = L1(ξ1)L1(ξ2) ψ8 = L1(ξ1)L2(ξ2)
ψ3 = L2(ξ1)L0(ξ2) ψ7 = L2(ξ1)L1(ξ2)
ψ6 = L3(ξ1)L0(ξ2)

• Triangular truncation is common, max order=3

• number of coefficient is P + 1 = (N+p)!
N!p!

N is the number of stochastic variables
p is the max polynomial degree in 1D
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How do we determine PC coefficients?

• Series: M(x , t , ξ) =
∑P

k=0 M̂k (x , t)ψk (ξ)

• Galerkin Projection on ψk basis (minimizes L2-error norm)

M̂k (x , t) = 〈M, ψk 〉 =

∫
M(x , t , ξ)ψk (ξ)ρ(ξ)dξ

• Non Intrusive Spectral Projection: Approximate integral
numerically via quadrature

M̂k (x , t) ≈
Q∑

q=1

M(x , t , ξq)ψk (ξq)ωq

• ξq/ωq quadrature points/weights
• Quadrature requires an ensemble run at ξq.
• No code modification is necessary
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Choice of Quadrature

• Gauss quadrature most accurate/point (ψp+1(ξq) = 0) but
Naive tensorization cost grows exponentially: pN .

• Rely on Nested Sparse Smolyak Quadrature Tempers the
curse of dimensionality

• Adaptive Quadrature
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Polynomial Chaos Expansions Summary

• Paradigm shift from statistical to combined
probabilistic/approximation view

• Can quantify approximation error and “convergence” to
solution

• No a-priori restriction/assumption on output statistics
• Approach robust to model non-linearity and model

differentiability
• Can be done non-intrusively via ensembles.
• Multiple independent stochastic variables can be handled

by multi-dimensonal tensorization of 1D basis functions
and quadratures.

• Sampling Challenges for high N or p
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Forward Problem: Parametric Sensitivity
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Description Range
critical Richardson # p1 ∈ [0.25, 0.7]
background viscosity p2 ∈ [10−4, 10−3]
background diffusivity p3 ∈ [10−5, 10−4]
drag coefficient factor p4 ∈ [0.2, 1.0]

Table: HYCOM uncertain inputs.
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• Legendre basis with p = 5
• 210 unknown coefficients
• Nested sparse Smolyack Ensemble

size 385 (� 64 = 1, 296 Gauss
quadrature)



Uncertainty Quantification (UQ) What is Polynomial Chaos Forward Propagation and Analysis Bayesian Inference UQ-Initial Conditions

Variance Analysis

Ti =
Variance due to parameterpi

Total variance
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Figure: Evolution of the global sensitivity indices T1, . . . ,T4 for SST
and MLD (bottom). The first vertical line indicates the time the
hurricane enters the GOM whereas the second indicates a time at
which the hurricane is close to the buoy.
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Figure: T3 (left) and T4 (right) sensitivity contours for SST. Drag dominates
uncertainty during high winds, otherwise it is background diffusivity.
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α = 1.1 α = 1 α = 0.4

~τ = ρaCDV ~V
CD = CD0 + CD1(Ts − Ta)

CD0 = a0 + a1Ṽ + a2Ṽ 2

CD1 = b0 + b1Ṽ + b2Ṽ 2

Ṽ = max [ Vmin, min (Vmax,V ) ]

CD is drag coefficient
V is wind speed at 10 m.
CD saturates for V > Vmax

• Blue circles: aircraft observations
• red: wind tunnel
• green: drop sondes
• magenta: HYCOM fit to COARE 2.5,
• Problem: Vmax and Cmax

D are not well-known and does CD
decrease for V > Vmax as drop sondes suggest?
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Inverse Modeling Problem

• Perturb CD by introducing 3 control variables (α,Vmax,m)

CD
′ = αCD for V < Vmax (3)

CD
′ = α[CD + m(V − Vmax)] for V > Vmax (4)

• multiplicative factor 0.4 ≤ α ≤ 1.1
• vary Vmax between 20 and 35 m/s
• m is a linear slope modeling decrease for V > Vmax with
−3.8× 10−5 ≤ m ≤ 0

• Use ITOP data to learn about likely distribution of α, Vmax
and m.
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Bayes Theorem: p(θ |T ) ∝ p(T |θ) p(θ)
• Likelihood: ε = T −M is normally distributed

p(T |θ) =
N∏

i=1

1√
2πσ2

exp
(
−(Ti −Mi)

2

2σ2

)
(5)

• σ2 unknown, treated as hyper-parameter. Assume a
Jeffreys prior

p(σ2) =

{
1
σ2 for σ2 > 0,
0 otherwise.

(6)

• Uninformed priors for α, Vmax and m:

p({α,Vmax,m}) =

{
1

bi−ai
for ai ≤ {α,Vmax,m} ≤ bi ,

0 otherwise,
(7)

where [ai ,bi ] denote the parameter ranges.
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Final Form of Bayes theorem

p({α,Vmax,m}, σ2|T ) ∝

[
N∏

i=1

1√
2πσ2

exp
(
−(Ti −Mi)

2

2σ2

)]
p(σ2) p(α) p(Vmax) p(m)

• Build full posterior with Markov Chain Monte Carlo (MCMC)
MCMC requires O(105) estimates of Mi : prohibitive

• Solve for center and spread of posterior
minimization problem requiring access to cost function
gradient and Hessian: Needs an adjoint model

• Rely on Polynomial Chaos expansions to replace HYCOM
by a polynomial series that could be either summed for
MCMC or differentiated for the gradients.
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Final Form of Bayes theorem
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Figure: Fanapi’s JTWC track (black curve) and paths of C-130 flights.
The yellow circles on the track represent the typhoon center at
00:00 UTC. The circles on the flight paths mark the 119 AXBT drops.
The 42× 42 km2 analysis box is also shown.
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Observed AXBT (28.75)
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Figure: Comparison of HYCOM vertical temperature profiles with
AXBT observations on Sep 14 (left), 15 (center) and 17 (right).
Temperature averages over the first 50 m are shown in the legend.
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PC Representation Errors
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Evolution of the area-averaged SST realizations (blue) and of
the corresponding PC estimates (red). The normalized rms
error (right panel) remains below 0.1% for the duration of the
simulation.
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Figure: Normalized error between realizations and the corresponding
PC surrogates at different depths; Top row: 00:00 UTC Sep 15;
bottom row: 00:00 UTC Sep 18.
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Depth Profile of Temperature Statistics
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SST Response Surface
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Figure: SST response surface as function of α and Vmax , with fixed
m = 0. Plots are generated on different days, as indicated. SST’s
dependence on Vmax decreases after 09/17.
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Markov Chain Monte Carlo
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Figure: Top row: chain samples for Vmax , m and α. Bottom row: chain
samples for σ2 generated for different days, as indicated.
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numbers show the Kullback-Liebler divergence quantifying the
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Remarks on posteriors

• Vmax exhibits a well-defined peak at 34 m/s.
• Posterior of m resembles prior. Data added little to our

knowledge of m.
• α shows a definite peak at 1.03 with a Gaussian

like-distribution.
•
√
σ2 is a measure of the temperature error expected. This

error grows with time from about 0.75◦ to 1◦C.
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Joint posterior PDFs
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Figure: Left: joint posterior distribution of α (left) and Vmax ; right: joint
posterior of α and σ2, generated for Sep 17-Sep 18. Single peak
located at Vmax = 34 m/s and α = 1.03. The posterior shows a tight
estimate for α with little spread around it.
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Variational Form
• maximize the posterior density, or equivalently, minimize

the negative of its logarithm

J (α,Vmax ,m, σ2
1, σ

2
2, σ

2
3, σ

2
4, σ

2
5) =

5∑
d=1

[
Jd +

(nd

2
+ 1
)

ln(σ2
d )
]
,

(8)
where Jd is the misfit cost for day d , the ln(σ2

d ) terms come
from the normalization factors of the Gaussian likelihood
functions and from the Jeffreys priors.

• The expression for Jd is:

Jd (α,Vmax ,m, σ2
d ) =

1
2σ2

d

∑
i∈Id

[Mi − Ti ]
2 , (9)

where Id is the set of nd indices of the observations from
day d .
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Adjoint-Free Gradients

Minimization requires cost function gradients

[
∂J
∂α

,
∂J
∂Vmax

,
∂J
∂m

]
=

5∑
d=1

1
σ2

d

∑
i∈Id

(Mi − Ti)

[
∂Mi

∂α
,
∂Mi

∂Vmax
,
∂Mi

∂m

]
Compute them from PC expansion[

∂M
∂α

,
∂M
∂Vmax

,
∂M
∂m

]
=

P∑
k=0

M̂k (x , t)
[
∂ψk

∂α
,
∂ψk

∂Vmax
,
∂ψk

∂m

]
.

• ∂ψk
∂α easy to compute

• No adjoint model needed
• For Hessian just differentiate above again.
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Figure: Posterior probability distributions for (top) drag parameters
and (bottom) variances σ2

d at selected days using variational method
and MCMC. The vertical lines correspond to the MAP values from
MCMC and optimal parameters found using the variational method.
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Uncertainty in Initial Boundary Conditions

Rely on EOFs to characterize uncertainty and reduce the
number of stochastic variables. For 2 EOFs mode we have:

u(~x ,0, ξ1, ξ2) = u(~x ,0) + α
[√

λ1U1ξ1 +
√
λ2U2ξ2

]
(10)

• (λk ,Uk ): are eigenvalues/eigenvectors of covariance
matrix obtained from free-run simulation

• u: unperturbed initial condition
• u(~x ,0, ξ): Stochastic initial condition input
• α: multiplicative factor to control size of “kick”
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Figure: First and Second SSH modes from a 14-day series. The 2
modes account for 50% of variance during these 14 days.

• Characterize local uncertainty: get perturbation from short,
14-day, simulation.

• Uncertainty dominated by Loop Current (LC) dynamics
• Mode 1 seems associated with a frontal eddy
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PC representation
• (ξ1, ξ2) independent and uniformly distributed random variables
• PC basis: Legendre polynomials of max degree 6, P = 28
• Ensemble of 49 realizations for Hermite quadrature
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0.5

1

-1 -0.5 0 0.5 1

ξ 2

ξ1

Figure: Quadrature/Sample points in ξ1, ξ2 space. Center black
circle corresponds to unperturbed run, while blue circles
correspond to largest negative and positive perturbations.



Col 1: SSH of
realization (1,1)
with weakest
frontal eddy

Col 2: SSH of
unperturbed
realization (4,4)
has medium
strength frontal
eddy

Col 3: SSH of
realization (7,7)
has strogest
frontal eddy and
earliest LC
separation

Col 4: Loop
current edge in
ensemble
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PC-error: ‖ε‖2
2 =

∑
q [η(~x , t , ξq)− ηPC(~x , t , ξq)]

2
ωq

SSH
PC-errors
(cm) grow in
time with
maxima in LC
region

On day 60
PC-error is
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stddev



T-section
along 25N,
stddev grows
in time with
maxima
coinciding
with Frontal
Eddy during
days 20–40.



PC-error: ‖ε‖2
2 =

∑
q [T (~x , t , ξq)− TPC(~x , t , ξq)]

2
ωq

T PC-errors
(cm) grow in
time with
maxima in LC
region

On day 60
PC-error is
about 50% of
stddev
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Distribution of SSH PC coefficients



Figure: Temperature (left) and Salt (right) profiles for extreme
realizations at DWH
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Varying polynomial order

20 40 60 80 100 120 140 160
10

−6

10
−5

10
−4

10
−3

10
−2

Simulation Time (hr)

R
el

at
iv

e 
L2

 E
rr

or

 

 

p=(5,5,5,5)
p=(5,5,7,7)
p=(2,2,5,5)
p=(2,2,7,7)

Figure: Relative L2 error between the area-averaged SST and the
Latin Hypercube Samples.

Simple Truncation P # of realizations
p = (5, 5, 5, 5) 126 385
p = (5, 5, 7, 7) 168 513
p = (2, 2, 5, 5) 36 73
p = (2, 2, 7, 7) 59 169
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Smolyak Projections

• Apply Smolyak’s algorithm directly to construct the PCE
instead of purely generating the quadrature. Thus, the final
projection becomes a weighted sum of aliasing-free
sub-projections. This is an extension of the Smolyak tensor
construction from quadrature operators to projection
operators.

• Smolyak projection allows a refinement approach based
on successive inclusion of any admissible multi-index, F ,
of quadrature rules while maintaining the representation
free of internal aliasing.

• A larger number of polynomials can be integrated than is
possible with a classical dimensional truncation /
quadrature using the same ensemble, The 513 HYCOM
realizations yields 402 coefficient with Smolyak projection
compared to 168 using Smolyak quadrature.
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Adaptive Projections

• Rewrite projection as tensor products of projection
differences: (

∆k1 ⊗ ...⊗∆kd

)
U,

• The L2 norm of this difference can be readily used to
define an error indicator for multi-index k,

ε(k) = ||
(
∆k1 ⊗ ...⊗∆kd

)
U||

The indicator represents the variance surplus due to the k
sub-projection.

• The surplus is computed for each k ∈ F and the
sub-projection with the highest ε(k) is selected for
subsequent refinement, which generally consists of
inclusion of admissible forward neighbors.
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Figure: Relative L2 difference between the PCE of the averaged SST
and the LHS sample. Plotted are curves generated with (i) the
adaptive Smolyak projection adapted at t = 60 hr, (ii) the Smolyak
projection with the full database, and (iii) Smolyak classical
quadrature using the full database. For the adapted solution, the
refinement is stopped after iteration 5, leading to 69 realizations and
a PCE with 59 polynomials. The full 513 database curves have 402
polynomials for the pseudo-spectral construction and 168
polynomials for the Smolyak quadrature.
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