Near-shore circulation

Waves and rip currents

Ad Reniers and Jamie MacMahan

Introduction

Definition: rip currents are fast seaward-directed, narrow currents that originate in the surf zone

Origin: rip currents are generated by alongshore modulations in waverelated forcing within the surf zone

Relevance:

rip currents redistribute phytoplankton, nutrients, sediment, pollutants, and humans across the surf zone and inner-shelf

Observations

Model predictions

Delft3dD model calculations

Observations (RIPEX)

Novel approach: Surfzone Drifters

- hand-held GPS = \$150
- \$250 per drifter, total
- absolute horizontal position accuracy
 0.40m
- velocity error < 0.01m/s

Drifter Deployments

Drifter Vectors

- 10m by 10m bins
- 5+ independent observations per bin

Rip Current Observations

Human Drifter

- starting position
- first revolution (~7min)
- second revolution (~6 min)
- ending position

Laboratory observations

Model verification

Objectives

- 1 Evaluate Delft3D modeling capability in predicting 3D nearshore rip current circulation
- 2 Subsequently assess the importance of the Stokes drift and VLFs in surf zone retention on a rip channeled beach

Approach

Combine unique field observations of rip circulation with numerical modeling. Use virtual drifters to assess surf zone retention.

Relevance

Human health, visibility, swimmer safety, ecology, etc

RCEX conditions

Modeling approach

Periods of 25 s and longer.

Bound long waves

Leaky and trapped waves

VLFs

Mean currents

Offshore boundary

Random phase model

$$\eta(x,y,t) = \sum_{i=1}^{N} \hat{\eta}_{i} e^{i(\sigma_{i}t - k_{x,i}x - k_{y,i}y + \phi_{i})} + *$$

$$E_{w}(x, y, t) = \frac{1}{2} \rho g |A_{low}(x, y, t)|^{2}$$

Hilbert Transform and low-pass filter

Model description

Delft3D wave and flow model (Lesser et al., 2004) solves for non-linear shallow water velocities in a GLM frame work (Walstra, Roelvink, Groeneweg, 2000)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + fv = -g \frac{\partial \zeta}{\partial x} + F^x + H_x + \frac{\partial}{\partial z} \left(\upsilon_z \frac{\partial u^E}{\partial z} \right)$$

GLM velocities are given by:

$$\mathbf{u} = \mathbf{u}^E + \mathbf{u}^S$$

And the Stokes drift is calculated from (Phillips, 1977):

$$\mathbf{u}^{S} = \frac{ka^{2} \cosh(2k(h+z))}{2\sinh^{2} kh} \frac{\mathbf{k}}{k}$$

Animation of wave energy E_w (KJ/m2) and surface flow velocity

Wave and flow modeling

Model resolves the wave energy at the wave group time scale (25 s and longer).

Low-frequency motions I

Intersecting wave trains

$$f1 = 0.101 \text{ Hz}$$

$$f2 = 0.990 Hz$$

$$\theta 1 = -12.25^{\circ}$$

$$\theta 2 = 12.5^{\circ}$$

(Fowler and Dalrymple, 1990)

Vorticity:

$$Q = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial v}$$

Low-frequency motions II

Alongshore separated wave groups

Two distinct wave groups (Ryrie, 1983)

Note that the time scale is determined by friction.

Surf Zone Eddies (VLFs)

Surface flows

Forcing

Outer surfzone

Outside surfzone

VLF velocity

Vortical motions with O(10) minute time scale

Low-pass filtered, f<0.004 Hz, de-trended signal

MacMahan et al., 2004, Reniers et al., 2007, 2009

summary

```
Surface flow velocity pattern ++
Subsurface velocity

• Inner surfzone (adcp4) +-

• Outer surfzone (adcp6) +-

VLF-velocities (adcp5) ++
```

Next: use **surface** velocities to examine surf zone retention

Drifter tracking

$$\mathbf{x}_{i}(t) = \mathbf{x}_{i}(t_{0}) + \int_{t_{0}}^{t_{0}+t} \mathbf{u}^{E}(\mathbf{x}_{i},t)dt$$

Eulerian tracks

$$\mathbf{x}_{i}(t) = \mathbf{x}_{i}(t_{0}) + \int_{t_{0}}^{t_{0}+t} \mathbf{u}(\mathbf{x}_{i}, t)dt$$

GLM tracks

Surfzone retention

Lagrangian Coherent Structures

Reniers et al., 2010

Cross-shore exchange

Patch-like distributions within the surf zone and streak-like distributions outside the surf zone!

conclusions

rip current circulations are mostly contained within the surf zone ~20% surf zone exits per hour on an open coast beach via a rip currents

Significant more retention than anticipated

Stokes related retention is important

VLFs are dominant mechanism for exchange

LCS explain patchy distributions in surf and streaks outside