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• Lagrangian data are data  from drifting buoys following the currents
with good approximation (Davis, 1991)

• Here we focus on drifters, i.e. Lagrangian instruments sampling the
mixed layer (2d view)

• We focus on two main themes:

Transport and dispersion studies at various scales: large
scale climatic applications and regional scale biological
applications

Feature detection from Lagrangian data: looking for eddies
and convergence lines

Overview



A little history and motivation

• Drifters have been intensively used from decades to sample the ocean
remotely,  thanks to satellite tracked transmitters that give  information on
positions (Sybrandy and Niiler, 1992; Niiler et al., 1995)

• During the 80’s and 90’s drifters have been used to sample the general
circulation  as “rowing currentmeters”, providing direct info on transport
and dispersion (Davis 1987, 1991)

• Sampling strategy was aimed at
providing  homogeneous coverage of
large scale. Single particle statistics has
been widely used to compute large scale
tracer transport (Colin de Verdiere,
1983; Poulain and Niiler, 1989;
Swenson and Niiler, 1996: Bauer et al.,
1998: Oh et al, 2000; Lumpkin et al.,
2002; Zurbas et al., 2004, 2014)

Richardson, 1983



• Pioneering studies of two-particle statistics started with Richardson and
Stommel (1948) annd continued with Kirwan et al. 1978, Davis 1985, Mc
Williams et al 1983, La Casce and Bower 2000, La Casce and Ohlmann
2003, often with chance pairs

• Dedicated experiments became more common after 2000, thanks also to
gps and increasing position precision (Koszalka et al., 2009, Berti et al 2010,
Lumkin end Elipot  2010, Schroeder et al 2011 and 2012)

• Carthe’s GLAD  is the
first experiment dedicated
to small scales  with
massive multi-particle
releases, able to provide
solid statistical results



Dispersion from single particle and two particle:
what is the difference?

• Definitions (in the x- direction for simplicity):

-  single particle: absolute dispersion D0 = < (x - x0)2 >

- two particle: relative dispersion Dr = < (x1 - x2)2 >

 where x(t,x0) is a trajectory position and x0 is its initial condition; x1, x2 are particle
pairs; <> is an ensemble average

• To understand the difference between D0 and Dr, consider the evolution of a cluster
of particles, characterized by the displacement of the center of mass, xc and the
spread about xc , Dxc.

• It can be shown that relative dispersion is proportional to  cluster spreading. Two
particle statistics is directly related to concentration statistics of a tracer clound.

Absolute dispersion, instead is a measure of particle displacement relative to their
initial condition.

•  In order to describe tracer dispersion from single particle, it is necessary to
introduce additional hypothesis.  We will review the “classic” oceanograhical
approach to this problem



Transport and dispersion at large scale from single
particle statistics: climatic applications

• Goal: to investigate large scale  tracer transport due to ocean currents

• Main hypothesis: there is a scale separation between large scale velocity U=<u>,
that advects the tracer and is treated deterministically, and the eddy field u’
considered as a random diffusive fluctuation

• Further hypotheses (for simplicity, but not only…): the eddy field statistics are
homgeneous and stationary

• Framework: use the advection and diffusion equation (AD)

where C is the tracer concentration, u’ is the eddy fluctuation, and K is the eddy
diffusivity, defined as follows



 where  R is the Lagrangian (along trajectory) eddy velocity autocovariance
(Taylor, 1921)

• In homogeneous and stationary flows, K is a constant since R asymptotically
tends to zero, (or  equivalently dispersion becomes linear in time)

 -----> mean flow U and diffusivity K are  in principle observational quantities
from Lagrangian data.

------> velocities u are computed along trajectories  by finite differences of the
positions.

 From u, the mean U and fluctuations u’ are computed, u = U + u’, and K is
computed from u’

• Once U and K are computed, the AD eq is  used to predict passive tracer
evolution, i.e.  T and S at large scales.



Estimating mean flow and diffusivity from Lagrangian
data: methods and challenges

• In practice, the computation of U and K is often problematic given that a) the
underlying hypothesis of scale separation is not valid; b) data are limited

• How are the “resolved” scales selected? For large scale, climatic applications,
scales are typically of the order of degrees in space and  months in time, depending
also on data availability

• • U is computed in various ways.
The simplest and most used way is
“binning” in space and time, i.e.
averaging over given intervals.
Other methods use spline
interpolation or objective analysis
(Davis, 1998; Gille (2003; Bauer et
al., 1998). All methods can be
affected by biases due to data
distribution.

From Jakobsen et al., 2003



• K is also computed in many ways (Davis, 1991). The most common one is based
on autocovariance integration. A number of conceptual problems.

• Mean flow removal. If U is not correctly removed, especially in presence of shear,
K does not asymptote to a constant. Possible solution: increase U resolution
(depending on data) or methods (Bauer et al., 1998, Mariano et al, 2014); consider
minor principal component of diffusivity tensor (Zhurbas et al., 2004).

Example of estimates of
diffusivity and
autocovariance in the
Tropical Pacific, varying
at varying mean
resolution

From Bauer et al., (1998)



•Aymptoticity. Computing asymptotic values of R is problematic
because: a) error increases at long lags: b) drifters sample
inhomogeneous regions.

• For this reason, K is often computed integrating over finite (short)
times. First zero crossing is a common choice

• BUT this can lead to overestimation of K, especially in presence of
eddies inducing negative lobes in autocovariance (Klocher et al., 2012,
Veneziani et al, 2004).

• Possible alternative solution:
use parametric approach where
the form of R is assumed
known (Griffa et al., 1995,
Mariano et al., 2014)

Example showing  two types of autocovariances,
exponential and with negative lobe



• Global K values are used to estimate  transport of T, S at large scale and
as input parameters for climate models

Example of diffusivity
computation from
Zhurbas et al., 2014.

Top: without seasonal
binning

Middle:  maximum
estimation (first zero
crossing)

Bottom: minimum
(asymptotic) estimation



Transport and dispersion at regional scales using Lagrangian
Stochastic Models (LSM)

• Regional scale transport studies are often applied to spreading of
pollutants or biological quantities.  Lagrangian Stochastic Models (LSM),
that  are conceptually similar to AD but more flexible, are often used

• LSMs are a class of models based on stochastic ordinary differential
equations that describe the motion of single tracer particles. A hierarchy of
LSMs at increasing complexity can be used (Griffa, 1996; Berloff and Mc
Williams, 2002)

• The tracer concentration C can be obtained simulating large ensembles of
particles and considering their distribution.



where σ2 is the variance, T is the integral time and  dw is a random increment,
<dw>=0, <dwi(t)dw(s)>=δ(t-s)dt, where T=dt/2

• The random walk is exactly equivalent to the AD diffusion. Its pdf equation
(Focker Planck) corresponds to AD.

• The first order Markov LSM is the “random flight”, introduced to study
developed turbulence and corresponding to  the Langevin equation in 1 D,
(Risken,1989;  Thompson, 1987;  Griffa, 1996)

! 

dx = Udt + d ˆ x 

d ˆ x = K dw

K = " 2T

! 

dx = (U + u')dt

du '= "(
u '
T
)dt +

2# 2

T
dw

• The simplest LSM is the “random walk”,  zero order Markov model.
For homogeneous and stationary flow, in one dimension:



• The first order model can be generalized introducing a coupling between the
2 velocity components trough the spin parameter:

where TL is the time scale, and dζ is a random increment. The model
appropriately describe 2d  Lagrangian turbulence and float motion (Reynolds,
2002; Veneziani et al. 2004, 2005b)

Loopers
(finite Ω)

Nonloopers
(Ω =0)

Autocovariance: with
negative lobe

Autocovariance:
exponential



• First order (and higher) LSMs  have well defined velocity autocovariance, so
they can be used to realistically describe initial tracer dispersion (differently
from AD)

• LSM’s are flexible and can be generalized to introduce inhomogeneous,
nonstationary flows, nonlinearity and higher order derivatives like acceleration
(Maurizi and Lorenzini, 2001; Pasquero et al., 2001; 2005, Berloff and Mc
Williams, 2002). With higher complexity more parameters are needed….

• First order LSMs have been
used in many biological
applications to study connectivity
(Cowen et al., 2000; Paris et al,
2007)

• LSMs are typically used as
subgrid scale parametrizations in
dynamical mesoscale models.
Individual biological behaviour
can be easily added.

From Paris et al, 2007



• LSMs are very useful but they have
strong limitations: they assume scale
separation (as AD) and they tend to
be overly diffusive, i.e. they do not
recognize dynamical boundaries

• A different approach to LSMs has
been proposed by Haza et al., (2007,
2012), and applied in Carthe

•  Scale separation is relaxed and it
is assumed that the dynamical model
partially resolvs small scales, even
though not correctly.

• The LSM correct the small scale
behaviour, modifying the variance
and time scale parameters. It does
not destroy the dynamical
boundaries.

From Haza  et al, 2007



Detecting feautures from Lagrangian data: looking for
eddies

• Investigating eddies from Lagrangian data has a long history. “Loopers”, i.e.
trajectories with multiple loops, have often been considered as eddy indicators
(Richardson, 1993)

• Caution: loopers can also be due to waves (inertial, tidal, equatorial, Rossby..) or
due to direct wind forcing.---> look for lopers but always check

•  Loopers have historically  been identified visually (Shoosmith, 2005). Automated
methods have been developed recently to investigate large data sets.

• Several methods have been proposed to identify eddies at various scales from
drifters (Veneziani et al., 2005; Lankhorst, 2006, Griffa et al., 2008, Lilly et al.,
2011)

• Here we focus on the spin based method (Veneziani et al., 2005, Griffa et al.,
2008)



use a Lagrangian parameter - the spin Ω -
to characterize particle rotation and polarity

Data and methodology
We adopt a particle-following methodology and analyze the
global data set of satellite-tracked drifters (1992-2006) drouged
at 15m (AOML/DAC website)

Number of Tseg=20 days trajectory segments per 5°x5° bins

•Divide trajectories in 20-days
long segments

•Estimate inertial period (IP) for
each segment

•Demean Lagrangian velocities
and lowpass filter them at 1.5IP



The spin was first introduced in the framework of Lagrangian
stochastic models (Borgas et al. 1997):

Here, we use Ω = (udv-vdu)/(2 DT EKE) to study polarity
distribution (Dt is the time sampling, EKE eddy kinetic
energy)

positive (negative) spin associates to cyclonic
(anticyclonic) motion in the Northern Hemisphere
(viceversa in the Southern Hemisphere)



Bin-averaged distribution of polarity Ω
*sign(lat) per 5°x5° bins

 

Zonally-averaged Ω  [days-1]

    Anticyclonic    Cyclonic•eddies associated with the main currents

•two zonal bands:

-anticyclonic band at 30°-40°, already noticed from rotary
spectrum studies (Rio and Hernandez 2003, Elipot 2006)

-cyclonic band at 10°-20°, previously unnoticed



What kind of motion is responsible for
the polarity bands?

Identify single loopers using the spin parameter and look
at their characteristics and distribution

Need a spin threshold Ω0 such that:
Ω > Ω 0          looper
Ω < Ω 0          nonlooper➡

Extensive preliminary analysis to define Ω 0

We found Ω 0~0.4 days-1



| Ω |>0.5 days-1   (blue=cyclones  red=anticyclones)

Looper radius (km)    R=sqrt(2σ)/ Ω



Example of loopers in the zonal bands

 

 

cyclones

anticyclones



What are the generation mechanisms of the
small scale structures in the polarity bands?

•anticyclonic band (30°-40°)

• Rio and Hernandez (2003) and Elipot (2006) show that the
wind also has anticyclonic polarity at these latitudes, and that
there is significant coherence between wind and drifters
velocity

➡ suggests that the anticyclonic band could be partly wind
induced

• Located in the region of the Subtropical Front (Tomczak et
al. 2004)



What are the generation mechanisms of the
small scale structures in the polarity bands?

•cyclonic band (10°-20°)

• Coherence with the wind is significantly reduced and no
definite wind polarity is detected (Rio and Hernandez 2003)

• Scales and structures of loopers are consistent with
submesoscale vortices (SMVs)

• SMVs are often related to mixed layer front instabilities



Barrier Layers distribution

The cyclonic regions are characterized by surface
Salinity Subtropical Fronts and coincide with regions
of formation of subtropical Barrier Layers (Sato et al.
2006)

Suggestion: the cyclonic structures are SMVs due to baroclinic
instabilities of the surface mixed layer. May play a role in
subtropical BLs formation



Separate	
  distribu-on	
  of	
  loopers	
  at	
  different	
  scales

Small scale loopers are prominent in the two bands and in
mesoscale active regions, and they are absent in the

regions of formation of rings

Mesoscale structures Smaller structures



• Motivated by these findings, a further investigation was performed using high
resolution models in two selected regions: the Gulf Stream recirculation (Mensa et
al., 2013), and the  South Atlantic BL region (Veneziani et al., 2014).

• Both areas are submesoscale rich, especially in winter, but with  very different
properties.

• In the Gulf Stream recirculation, the submesoscale is primarily due to frontal
instabilities of mesoscale eddies, and is strain dominated

• In the South Atlantic BL region, where mesoscale is very weak,  submesoscale is
mainly  due to instability of surface salinity fronts, and is mostly elliptic and
cyclonic. It contributes to Barrier Layer formation

---> Results confirm that the spin method helps diagnosing the elliptic part of the
flow



Detecting feautures from Lagrangian data: looking for
convergence lines

• During the Carthe’s experiments we often observed drifters converging along lines
and moving coherently

• Convergence lines  can be due to different processes at different scales: mesoscale
fronts; small scale salinity fronts; Langmuir cells; internal wave signaturea

• They are characterized by different scales in space and time and by different
density properties and velocity with respect to alignment lines

• We are presently investigating methods to quantitatively identify them  from drifter
data and investigate their nature

• Preliminary results from S. Marini and M. Berta (CNR, ISMAR) (from
yesterday…)

• Identify convergence lines (“streaks” for lack of a better term) using parameters
suggested by relative dispersion analysis (Poje et al., 2014)



Streaks	
  defini-on

A	
  STREAK	
  is	
  a	
  line	
  l	
  through	
  the	
  point
(x0,y0) and	
  parallel	
  to	
  the	
  vector	
  (α,β)
such	
  that	
  a	
  set	
  of	
  N	
  par-cles	
  (dri9ers):
1.lies	
  not	
  further	
  than	
  ε	
  from	
  the	
  line	
  l	
  ;
2.the	
  distance	
  between	
  two	
  adjacent
par-cles	
  is	
  not	
  larger	
  than	
  δ	
  ;
3.	
  N	
  is	
  at	
  least	
  3	
  ;
4.a	
  subset	
  s	
  of	
  N	
  belongs	
  to	
  the	
  same
streak,	
  i.e.	
  it	
  respects	
  condi-ons	
  1	
  and	
  2,
at	
  least	
  for	
  a	
  -me	
  period	
  τ .



S1	
  triangles
S2	
  circles
Color	
  salinity	
  at
deployment



S1	
  triangles
S2	
  circles
Color	
  salinity	
  at
deployment



S1	
  streaks	
  for	
  25-­‐Jul-­‐2012	
  05:00

N=  4 part.; δ=  2km; ε=  0.5km; s= 1 part.;
τ= 12 h.



S1	
  triangles
S2	
  circles
Color	
  salinity	
  at
deployment



S1	
  triangles
S2	
  circles
Color	
  salinity	
  at
deployment



S1	
  streaks	
  for	
  29-­‐Jul-­‐2012	
  19:00

N=  4 part.; δ=  8km; ε=  2km; s= 1 part.; τ=
12 h.



S1	
  triangles
S2	
  circles
Color	
  salinity	
  at
deployment



S2	
  streaks	
  for	
  29-­‐Jul-­‐2012	
  19:00

N=  4 part.; δ=  15km; ε=  5km; s= 1 part.;
τ= 12 h.



• The method shows good potential

• It is sensitive to parameter choice

• Next steps:

• Analyze the identified streaks to get insights on dynamics. Some of them appear
characterized by velocity along the line (fronts), others across the line (instabilities,
waves?)

• Identify best strategy to choose the parameters. Several possibilities.

 - parameters can be chosen a-priori  according to some criteria (time after
deployment, targeted dynamics, size of observed cluster)

- training by expert identification

-  UQ methods





•The stochastic term µ   represents the “missing component”,  i.e. the
component of the eddy field that is not correctly described by the model.  It
can be considered as a Lagrangian subgrid scale (LSGS) model.

• In many  papers in the literature µ   is (arbitrarily) assumed to be a
Markov 1 model.  The parameters σ2  and T are often chosen ad hoc in order
to obtain  statistics close to the  historical Lagrangian data in the area
(Dutkiewicz et al., 1993; Paris et al., 2004).

 In a recent paper (Haza et al., 2006), the question of how to objectively
determine µ, in order to obtain a corrected statistics of  xc that match
historical data  has been considered.



• Under some simplifying assumptions it is shown theoretically

that µ obeys  to (for a single component) :

 dµ/dt = a dum/dt + b um + cµ,

where a, b, c depend on the statistics of the model, σ2 
m,Tm, and of the

real in-situ data, σ2 
r,Tr ,

   a=(σr√ Tm )/ (σm√ Tr ) -  1,

  b = σr/(σm √ Tm Tr
 ) - 1/ Tr

  c= -1/ Tr .
µ


