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Motivation

How do we make predictions in the face of uncertainty?
We have a model for the dynamics, but it might have inherent errors...

We have measurements, but these are not complete and there might be
measurement errors...
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Motivation

Three Time-dependent Estimation Problems

Given a random time series {X(t) ∈RN : t≤ t0} (from models, data, controls):

Retrodiction:

X̃(t) : t ≤ t0.

e.g., paleoclimate reconstruction, optimal control path.

Nudiction:
X̃(t) : t = t0.

e.g., best initial conditions for weather prediction, optimal configuration.

Prediction:
X̃(t) : t > t0.

e.g., weather prediction, system forecast.

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 3 / 136



Motivation

Automating Navigation: flying airplanes and spacecraft,
driving rovers and probes...

Image, courtesy of JPL, Pasadena CA.
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Motivation

The Prediction Problem (Methodology/unconstrained data)

Atmospheric CO2 at Mauna Loa Observatory (collected by D. Keeling, Scripps).
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The Prediction Problem (Methodology/unconstrained data)
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The Prediction Problem (Methodology/unconstrained data)
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Motivation

The Prediction Problem

When data fool us...

0 100 200 300 400 500 600
−2

−1

0

1

2

time

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 9 / 136



Motivation

The Prediction Problem

When data fool us...
same data, zoomed in

0 5 10 15 20
−2

−1

0

1

2

time

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 10 / 136



Motivation

The Prediction Problem

...use our understanding of the dynamics

dx = 4x(1− x2)dt+κdWt

x(0) = x0
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Motivation

PART I: LINEAR ALGEBRA BACKGROUND

Introduction largely drawn from G. Strang’s Linear Algebra and its
Applications book.
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Matrices and vectors Definitions

1. Matrices and vectors

An m×n matrix is an array with m rows and n columns. It is typically
written in the form

A = [aij] =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,
where i is the row index and j is the column index.

A column vector is an m×1 matrix. Similarly, a row vector is a 1×n
matrix.

The entries aij of a matrix A may be real or complex.
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Matrices and vectors Definitions

Matrices and vectors (continued)

Examples:

A =

[
1 2
3 4

]
is a 2×2 square matrix with real entries.

u =

[
1
3

]
is a column vector of A.

B =

 1 0 0
0 i 0
0 0 3−7i

 is a 3×3 diagonal matrix, with complex entries.

An n×n diagonal matrix whose entries are all ones is called the n×n
identity matrix.

C =

[
1 2 3 10
1 6 −8 0

]
is a 2×4 matrix with real entries.
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Matrices and vectors Matrix addition and scalar multiplication

Matrix addition and scalar multiplication

Let A = [aij] and B = [bij] be two m×n matrices, and let c be a scalar.

The matrices A and B are equal if and only if they have the same entries,

A = B⇐⇒ aij = bij, for all i, j, 1≤ i≤ m, 1≤ j≤ n.

The sum of A and B is the m×n matrix obtained by adding the entries of
A to those of B,

A+B = [aij +bij] .

The product of A with the scalar c is the m×n matrix obtained by
multiplying the entries of A by c,

cA = [caij] .
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Matrices and vectors Matrix multiplication

2. Matrix multiplication

Let A = [aij] be an m×n matrix and B = [bij] be an n×p matrix. The
product C = AB of A and B is an m×p matrix whose entries are obtained
by multiplying each row of A with each column of B as follows:

cij =
n

∑
k=1

aik bkj.

Examples: Let A =

[
1 2
3 4

]
and C =

[
1 2 3 10
1 6 −8 0

]
.

Is the product AC defined? If so, evaluate it.

Same question with the product CA.

What is the product of A with the third column vector of C?
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Matrices and vectors Matrix multiplication

Matrix multiplication (continued)

More examples:
Consider the system of equations 3x1 +2x2− x3 = 4

x2−7x3 = 0
−x1 +4x2−6x3 =−10

.

Write this system in the form AX = Y , where A is a matrix and X and Y are
two column vectors.

Let

A =

[
1 2
3 4

]
and B =

[
5 6
7 8

]
.

Calculate the products AB and BA.
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Matrices and vectors Rules for matrix addition and multiplication

3. Rules for matrix addition and multiplication

The rules for matrix addition and multiplication by a scalar are the same
as the rules for addition and multiplication of real or complex numbers.

In particular, if A and B are matrices and c1 and c2 are scalars, then

A+B = B+A

(A+B)+C = A+(B+C)

c1 (A+B) = c1 A+ c1 B

(c1 + c2)A = c1A+ c2A

c1 (c2 A) = (c1 c2)A

whenever the above quantities make sense.
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Matrices and vectors Rules for matrix addition and multiplication

Rules for matrix addition and multiplication (continued)

The product of two matrices is associative and distributive, i.e.

A(BC) = (AB)C = ABC

A(B+C) = AB+AC (A+B)C = AC+BC.

However, the product of two matrices is not commutative. If A and B are
two square matrices, we typically have

AB , BA

For two square matrices A and B, the commutator of A and B is defined as

[A,B] = AB−BA.

In general, [A,B] , 0. If [A,B] = 0, one says that the matrices A and B
commute.

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 19 / 136



Matrices and vectors Transposition

4. Transposition

The transpose of an m×n matrix A is the n×m matrix AT obtained from
A by switching its rows and columns, i.e.

if A = [aij] , then AT = [aji] .

Example: Find the transpose of C =

[
1 2 3 10
1 6 −8 0

]
.

Some properties of transposition. If A and B are matrices, and c is a
scalar, then

(A+B)T = AT +BT (cA)T = cAT

(AB)T = BTAT (
AT)T

= A,

whenever the above quantities make sense.
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Linear independence

Linear independence

A linear combination of the n vectors a1, a2, · · · , an is an expression of
the form

c1a1 + c2a2 + · · ·+ cnan,

where the ci’s are scalars.

A set of vectors {a1,a2, · · · ,an} is linearly independent if the only way
of having a linear combination of these vectors equal to zero is by
choosing all of the coefficients equal to zero. In other words,
{a1,a2, · · · ,an} is linearly independent if and only if

c1a1 + c2a2 + · · ·+ cnan = 0 =⇒ c1 = c2 = · · ·= cn = 0.

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 21 / 136



Linear independence Examples

Linear independence (continued)

Examples:

Are the columns of the matrix A =

[
1 2
3 4

]
linearly independent?

Same question with the columns of the matrix C =

[
1 2 3 10
1 6 −8 0

]
.

Same question with the rows of the matrix C defined above.

A set that is not linearly independent is called linearly dependent.

Can you find a condition on a set of n vectors, which would guarantee
that these vectors are linearly dependent?
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Vector space Definitions

6. Vector space

A real (or complex) vector space is a non-empty set V whose elements
are called vectors, and which is equipped with two operations called
vector addition and multiplication by a scalar.

The vector addition satisfies the following properties.
The sum of two vectors a ∈ V and b ∈ V is denoted by a+b and is
an element of V .

It is commutative: a+b = b+a, for all a,b ∈ V .

It is associative: (a+b)+ c = a+(b+ c) for all a,b,c ∈ V .

There exists a unique zero vector, denoted by 0, such that for every
vector a ∈ V , a+0 = a.

For each a ∈ V , there exists a unique vector (−a) ∈ V such that
a+(−a) = 0.
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Vector space Definitions

Vector space (continued)

The multiplication by a scalar satisfies the following properties.
The multiplication of a vector a ∈ V by a scalar α ∈R (or α ∈ C) is
denoted by α a and is an element of V .

Multiplication by a scalar is distributive:

α (a+b) = α a+α b, (α +β )a = α a+β a,

for all a,b ∈ V and α,β ∈R (or C).

It is associative: α (βa) = (α β )a for all a ∈ V and α,β ∈R (or C).

Multiplying a vector by 1 gives back that vector, i.e.

1a = a,

for all a ∈ V .
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Vector space Bases and dimension

Bases and dimension

The span of set of vectors U = {a1,a2, · · · ,an} is the set of all linear
combinations of vectors in U . It is denoted by

Span{a1,a2, · · · ,an} or Span(U )

and is a subspace of V .

A basis B of a subspace S of V is a set of vectors of S such that
Span(B) = S;

B is a linearly independent set.

Theorem: If a basis B of a subspace S of V has n vectors, then all other
bases of S have exactly n vectors.

The dimension of a vector space V (or of a subspace S of V) spanned by
a finite number of vectors is the number of vectors in any of its bases.
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Motivation

Rank

The row space of an m×n matrix A is the span of the row vectors of A. If
A has real entries, the row space of A is a subspace of Rn.

Similarly, the column space of A is the span of the column vectors of A,
and is a subspace of Rm.

The rank of a matrix A is the dimension of its column space.

Theorem: The dimensions of the row and column spaces of a matrix A
are the same. They are equal to the rank of A.

Example: Check that the row and column spaces of

C =

[
1 2 3 10
1 6 −8 0

]
are vector subspaces, and find their dimension.
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Motivation The rank theorem

The rank theorem

The null space of an m×n matrix A, N (A) is the set of vectors u such
that Au = 0. If A has real entries, then N (A) is a subspace of Rn.

The rank theorem states that if A is an m×n matrix, then

rank(A)+dim(N (A)) = n.

Example: Find the rank and the null space of the matrix

C =

[
1 2 3 10
1 6 −8 0

]
.

Check that the rank theorem applies.

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 27 / 136



Linear systems of equations

Linear systems of equations

A linear system of equations of the form

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2

· · ·
am1x1 +am2x2 + · · ·+amnxn = bm

can be written in matrix form as AX = B, where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , X =


x1
x2
...

xn

 , B =


b1
b2
...

bm


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Linear systems of equations Solutions

Solution(s) of a linear system of equations

Given a matrix A and a vector B, a solution of the system AX = B is a
vector X which satisfies the equation AX = B.

If B is not in the column space of A, then the system AX = B has no
solution. One says that the system is not consistent. In the statements
below, we assume that the system AX = B is consistent.

If the null space of A is non-trivial, then the system AX = B has more
than one solution.

The system AX = B has a unique solution provided dim(N (A)) = 0.

Since, by the rank theorem, rank(A)+dim(N (A)) = n (recall that n is
the number of columns of A), the system AX = B has a unique solution if
and only if rank(A) = n.
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Motivation

Solution(s) of a linear system of equations (continued)

A linear system of the form AX = 0 is said to be homogeneous.

Solutions of AX = 0 are vectors in the null space of A.

If we know one solution X0 to AX = B, then all solutions to AX = B are
of the form

X = X0 +Xh

where Xh is a solution to the associated homogeneous equation AX = 0.

In other words, the general solution to the linear system AX = B, if it
exists, can be written as the sum of a particular solution X0 to this
system, plus the general solution of the associated homogeneous system.
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Inverse of a matrix Definitions

2. Inverse of a matrix

If A is a square n×n matrix, its inverse, if it exists, is the matrix, denoted
by A−1, such that

AA−1 = A−1 A = In,

where In is the n×n identity matrix.

A square matrix A is said to be singular if its inverse does not exist.
Similarly, we say that A is non-singular or invertible if A has an inverse.

The inverse of a square matrix A = [aij] is given by

A−1 =
1

det(A)
[Cij]

T ,

where det(A) is the determinant of A and Cij is the matrix of cofactors of
A.
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Inverse of a matrix Determinant of a matrix

Determinant of a matrix

The determinant of a square n×n matrix A = [aij] is the scalar

det(A) =
n

∑
i=1

aijCij =
n

∑
j=1

aijCij

where the cofactor Cij is given by

Cij = (−1)i+j Mij,

and the minor Mij is the determinant of the matrix obtained from A by
“deleting” the i-th row and j-th column of A.

Example: Calculate the determinant of A =

 1 2 3
4 5 6
7 8 9

.
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Inverse of a matrix Determinant of a matrix

Properties of determinants

If a determinant has a row or a column entirely made of zeros, then the
determinant is equal to zero.

The value of a determinant does not change if one replaces one row
(resp. column) by itself plus a linear combination of other rows (resp.
columns).

If one interchanges 2 columns in a determinant, then the value of the
determinant is multiplied by −1.

If one multiplies a row (or a column) by a constant C, then the
determinant is multiplied by C.

If A is a square matrix, then A and AT have the same determinant.
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Inverse of a matrix Properties of the inverse

Properties of the inverse

Since the inverse of a square matrix A is given by

A−1 =
1

det(A)
[Cij]

T ,

we see that A is invertible if and only if det(A) , 0.

If A is an invertible 2×2 matrix,
[

a11 a12
a21 a22

]
, then

A−1 =
1

det(A)

[
a22 −a12
−a21 a11

]
,

and det(A) = a11a22−a21a12.

If A and B are invertible, then

(AB)−1 = B−1A−1 and
(
A−1)−1

= A.
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Inverse of a matrix Linear systems of n equations with n unknowns

Linear systems of n equations with n unknowns

Consider the following linear system of n equations with n unknowns,

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2

· · ·
an1x1 +an2x2 + · · ·+annxn = bn

This system can be also be written in matrix form as AX = B, where A is
a square matrix.

If det(A) , 0, then the above system has a unique solution X given by

X = A−1B.
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Inverse of a matrix Linear systems of n equations with n unknowns

Linear systems of equations - summary

Consider the linear system AX = B where A is an m×n matrix.

The system may not be consistent, in which case it has no solution.

To decide whether the system is consistent, check that B is in the column
space of A.

If the system is consistent, then
Either rank(A) = n (which also means that dim(N (A)) = 0), and the
system has a unique solution.

Or rank(A)< n (which also means that N (A) is non-trivial), and the
system has an infinite number of solutions.
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Inverse of a matrix Linear systems of n equations with n unknowns

Linear systems of equations - summary (continued)

Consider the linear system AX = B where A is an m×n matrix.

If m = n and the system is consistent, then
Either det(A) , 0, in which case rank(A) = n, dim(N (A)) = 0, and the
system has a unique solution;

Or det(A) = 0, in which case dim(N (A))> 0, rank(A)< n, and the
system has an infinite number of solutions.

Note that when m = n, having det(A) = 0 means that the columns of A
are linearly dependent.

It also means that N (A) is non-trivial and that rank(A)< n.
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Eigenvalues and eigenvectors Eigenvalues

3. Eigenvalues and eigenvectors

Let A be a square n×n matrix. We say that X is an eigenvector of A with
eigenvalue λ if

X , 0 and AX = λX.

The above equation can be re-written as

(A−λ In)X = 0.

Since X , 0, this implies that A−λ In is not invertible, i.e. that
det(A−λ In) = 0.

The eigenvalues of A are therefore found by solving the characteristic
equation det(A−λ In) = 0.
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Eigenvalues and eigenvectors Eigenvalues

Eigenvalues

The characteristic polynomial det(A−λ In) is a polynomial of degree n
in λ . It has n complex roots, which are not necessarily distinct from one
another.

If λ is a root of order k of the characteristic polynomial det(A−λ In), we
say that λ is an eigenvalue of A of algebraic multiplicity k.

If A has real entries, then its characteristic polynomial has real
coefficients. As a consequence, if λ is an eigenvalue of A, so is λ̄ .

It A is a 2×2 matrix, then its characteristic polynomial is of the form
λ 2−λ Tr(A)+det(A), where the trace of A, Tr(A), is the sum of the
diagonal entries of A.
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Eigenvalues and eigenvectors Eigenvalues

Eigenvalues (continued)

Examples: Find the eigenvalues of the following matrices.

A =

[
−1 0
0 5

]
.

B =

[
−1 9
0 5

]
.

C =

[
−13 −36

6 17

]
.

D =

 4 −1 1
−1 4 −1
−1 1 2

.
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Eigenvalues and eigenvectors Eigenvectors

Eigenvectors

Once an eigenvalue λ of A has been found, one can find an associated
eigenvector, by solving the linear system

(A−λ In)X = 0.

Since N (A−λ In) is not trivial, there is an infinite number of solutions
to the above equation. In particular, if X is an eigenvector of A with
eigenvalue λ , so is αX, where α ∈R (or C) and α , 0.

The set of eigenvectors of A with eigenvalue λ , together with the zero
vector, form a subspace of Rn (or Cn), Eλ , called the eigenspace of A
corresponding to the eigenvalue λ .

The dimension of Eλ is called the geometric multiplicity of λ .
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Eigenvalues and eigenvectors Eigenvectors

Eigenvectors (continued)

Examples: Find the eigenvectors of the following matrices. Each time,
give the algebraic and geometric multiplicities of the corresponding
eigenvalues.

A =

[
−1 0
0 5

]
.

C =

[
−13 −36

6 17

]
.

D =


4 −1 1
−1 4 −1

−1 1 2

.
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Eigenvalues and eigenvectors Properties of eigenvalues and eigenvectors

Properties of eigenvalues and eigenvectors

The geometric multiplicity mλ of an eigenvalue λ is less than or equal to
its algebraic multiplicity Mλ .

If Mλ = 1, then mλ = 1.

If mλ is not equal to Mλ , then one can find Mλ −mλ linearly
independent generalized eigenvectors of A, by solving a sequence of
equations of the form

(A−λ In)Ui+1 = Ui, i ∈ {1, · · · ,Mλ −mλ}

where U1 = Xλ is a genuine eigenvector of A with eigenvalue λ .
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Eigenvalues and eigenvectors Properties of eigenvalues and eigenvectors

Properties of eigenvalues and eigenvectors (continued)

Examples: Find the genuine and generalized eigenvectors of the
following matrices

M =


4 1 0 0
0 4 0 0
0 0 4 1
0 0 0 4

.

N =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

If A has k distinct eigenvalues and B1, · · · ,Bk are bases of the
corresponding generalized eigenspaces, then {B1, · · · ,Bk} is a basis of
Rn (or Cn).
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Eigenvalues and eigenvectors Properties of eigenvalues and eigenvectors

Linear Transformations
Suppose the vectors x1,x2, ...,xn are a basis for the linear vector space V and
y1,y2, ...,ym are a basis for the linear vector space W. Then each linear
transformation A from V to W is represented by a matrix. The jth column is
found by applying A to the jth basis vector; the result, Axj is a linear
combination of the y’s and the coefficients in that combination go into column
j:

Axj = a1y1 +a2y2 + ...+amym.
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Eigenvalues and eigenvectors Properties of eigenvalues and eigenvectors

Important Linear Transformations
The linear transformation Az transforms z as follows:

from Rn to Rm, where m can be equal to n. Some of the most important linear
transformations are (consider A ∈R2×2 and z ∈R2:

Dilation: A = cIn, where c is constant. It stretches (or shrinks) x.

Rotation: A =

[
0 −1
1 0

]
. Rotates by some angle 90o (coordinate

rotation) while preserving the size of the vector x.

Reflection: A =

[
0 1
1 0

]
. Reflects about the axis y = x. Generally,

reflects about some axis of symmetry.

Projection: A =

[
1 0
0 0

]
. Takes z in 2-dimensions, to 1-dimension:

here it takes a vector z in the plane (x,y) to the nearest point (x,0) on the
horizontal axis. Note that neither the dimension or the length of z are
preserved.
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Eigenvalues and eigenvectors Properties of eigenvalues and eigenvectors

Important Linear Transformations

More generally (again, consider A ∈R2×2 and z ∈R2:

Dilation: A = cIn, where c is
constant. It stretches (or shrinks)
x.

Rotation by angle θ :

A =

[
cosθ sinθ

−sinθ cosθ

]
.

Reflection across line at angle θ :
A =[

2cos2 θ −1 2cosθ sinθ

2cosθ sinθ 2sin2
θ −1

]
.

Projection onto line at angle θ :

A =

[
cos2 θ cosθ sinθ

sinθ cosθ sin2
θ

]
.
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Motivation

Projections onto a Line

Problem: Given a vector a and another vector b, the challenge is to find the
shortest distance between the tip of one of the vectors to any point colinear
with the other vector.

Note that this point p is such that a vector perpendicular to a extends to b.
This is a first example of least squares problem.
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Motivation

Projections onto a Line

The projection of b into the line, through 0 and a is

p = xa =
a>b
|a|2

a.

Note that a>b = |a| |b|cosθ .
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Motivation

Least Squares in Several Variables

Let A ∈Rm×n and b ∈Rm.

A Practical Problem: Given m observations (data), you want to propose a
model of the form

Ax−b = r,

such that A is as ”compact” as possible and/or r is as ”small” as possible.

Geometrically, for m = 3, and n = 2 (thus x ∈R2):
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Motivation

Least Squares in Several Variables

r must be perpendicular to every column of A: That is,

a>1 (b−Ax) = 0
...

a>n · (b−Ax) = 0.

Or
A>r = 0, equivalently, A>Ax = A>b.
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Motivation

Least Squares in Several Variables

The ”smallness” of r can be measured in terms of a norm.
A convenient norm is the 2-norm:

E := ||r||22 = r>r = (Ax−b)>(Ax−b).

We note that
1
2

dE
dx

= A>(Ax−b)

which we call the normal equations.

For a given b and a choice of A, we can find x which minimizes the distance
squared E: E is smallest where dE

dx = 0. This equation gives us x.
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Motivation

The Least Squares Solution to the system of m equations in n unknowns

It satisfies A>Ax = A>b

If the columns of A are linearly independent, then A>A is invertible and

x = (A>A)−1A>b.

The projection of b into the column space of A is thus

p = Ax = A(A>A)−1A>b.

Note: A>A is symmetric and has the same null space as A, invertible if the
columns of A are linearly independent.
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Motivation

Example: Given data: b = 1 at t =−1, b = 1 at t = 1, b = 3 at t = 2. Propose
a model of the form D+Gti = bi. Find scalars D and G, that in the
least-square sense satisfies the equation, for all data points. Solution:

Try next a model of the form D+Gt2
i = bi.
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Motivation

The Gaussian Probability Distribution

p(X) =
1√
2πσ

e−
1

2σ2 (X−m)2

is a 2-parameter probability distribution:

m =
∫

∞

−∞

xp(x)dx := 〈x〉,

and
σ =

∫
∞

−∞

(x−m)2p(x)dx := 〈(x−m)2〉.

m and σ2 are known as the mean and variance (or the first and second
moments of p(X)).
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Motivation

Gaussian Probability Distributions in Vector Spaces

Let x := [x1 x2 ...xN ]
>, where xi are scalars with Gaussian PDF’s. Let m ∈RN

p(X) =
1√
2πσ

e−
1

2σ2 (X−m)2

is a 2-parameter vector probability distribution:

m =
∫

∞

−∞

xp(x)dx = 〈x〉,

and
C :=

∫
∞

−∞

(x−m)(x−m)>p(x)dx = 〈(x−m)(x−m)>〉

m and C ∈R+n×n are known as the mean and variance (or the first and
second moments of p(X)). Here,

p(X) =
1

(2π)N/2

1√
detC

e−
1
2 [X−m]>C−1[X−m].
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Motivation

Suppose C is diagonal
C = 〈xixj〉= δijσ

2
i ,

and m = 0, then the normal, delta-correlated vector distribution is

p(X) =
1

(2π)N/2

1√
detC

e
− 1

2

[
x2
1

σ2
1
+

x2
2

σ2
2
+...+

x2
N

σ2
N

]

This normal distribution is known as vector white noise.
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Motivation

Back to Least Squares, a Statistical Interpretation

Consider data b(ti) = L(ti)+n(ti), i = 1,2, ...,m.

L(ti) = D+Gtα
i := AijXj,

here X := [D G]>. α is a parameter associated with the ”model.” Succinctly:

AX−b = N.

Assume that the Gaussian noise processes are have zero mean and are
”delta-correlated”: 〈n(ti)〉= 0 and 〈n(ti)n(tj)〉= δijσ

2
i .

So the Least Squares gives an estimate x̃, given by x̃ = (A>A)−1A>b, with
error covariance

P := 〈(x− x̃)(x− x̃)>〉= (A>A)−1A> < NN> > A(A>A)−1 = σ
2
i (A

>A)−1
δ ij.

and estimated fit Ñ = b−Ax̃ = (δij−A(A>A)−1A>)b.
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Motivation

When there’s excellent data

When data do not fail us...
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Motivation
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Motivation

When data do not fail us...
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Motivation

When data do not fail us...
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Motivation

When data do not fail us...
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Motivation

When data do not fail us...
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Bayes

Combining Observations and Mathematical Models

Why is this a good idea? Suppose the data for some experiment was:
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Bayes

If you used only the model...

dx = 4x(1− x2)dt+κdWt

x(0) = x0

−3 −2 −1 0 1 2 3
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Bayes

Using Data and Models:

Focus on linear-Gaussian case:

P(x|y) ∝ Likelihood×Prior.

Use data y for likelihood: y = Hx+n1

Use model for prior: Ax−b = n2
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Bayes

Combining Models and Data, the Linear Gaussian Case

if n1 ∼ e−ξ 2/Q2
and n2 ∼ e−ζ 2/R2

are normally distributed

P(x|y)∼ e
− (Ax−b)2

Q2 e−
(y−Hx)2

R2 = e
−
[
(Ax−b)2

Q2 + (y−Hx)2

R2

]
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Bayes Linear/Gaussian Estimation

BAYESIAN Least Squares for Linear/Gaussian Problems

Linear/Gaussian global data assimilation: given a model

A(m)x−b = θ1,

and data
B(m)x− y = θ2

Leads to the following least squares problem:

W(m)x−V = Θ,

Θ∼N (0,R).

Find x̃ , mean, such that E(θ>θ) is minimized.
(Also, find the uncertainty P := E[(x− x̃)(x− x̃)>]).
Remark: Minimizing the variance above, maximizes the Bayesian conditional
probability:

P(x|y) ∝ exp(−Θ
2/R) = exp(−θ

2
2 /r2)exp(θ 2

1 /r1).
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Bayes Linear/Gaussian Estimation

Recalling Least Squares

Given the least squares problem:

Wx−V = Θ,

Extremize
J := ‖Θ>Θ‖= ‖[Wx−V]>[Wx−V]‖.

Solve the Normal Equations W>Wx̃ = W>V , which yield

x̃ = (W>W)−1W>V, the estimate,

ñ = V−Wx̃ = (I−W(W>W)−1W>)V, the residual,
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Bayes Linear/Gaussian Estimation

Same, but ROW WEIGHTED Least Squares

Given the least squares problem:

Wx−V = Θ,

with Normal 〈Θ〉= 0 and 〈ΘiΘj〉= Q.
The connection to the old problem is
W = Q−>/2W, Θ = Q−>/2Θ, V = Q−>/2V .

Extremize
J := 〈Θ>Θ〉= 〈[Wx−V]>Q−1[Wx−V]〉.

The Cholesky decomposition of Q = Q>/2Q1/2.
Solve the Normal Equations W>Wx̃ = W>V , which yield

x̃ = (W>Q−1W)−1W>Q−1V, the estimate,

ñ = Q>/2ñ = (I−W(W>Q−1W)−1W>Q−1)V, the residual,

P := (W>Q−1W)−1W>Q−1W(W>Q−1W)−1, uncertainty,

A common situation: Qij = E(ΘiΘj).
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Bayes Linear/Gaussian Estimation

Sequential Least Squares

Let x(t) := [x1,x2]
>. Suppose you already have an estimate of x1. Can we use

this to find the estimate of x2?

W1x1−V1 = Θ1, W2x2−V2 = Θ2.

Let 〈Θi〉= 0, 〈ΘiΘi
>〉= Qi. Assume additionally that 〈Θ1Θ2

>〉= 0. The
global estimate is obtained by extremizing

J =
2

∑
i=1

[Wixi−Vi]
>Q−1

i [Wixi−Vi].

Suppose we already have x1 and P1, then

x̃2 = (W>1 Q−1
1 W1 +W>2 Q−1

2 W2)
−1(W>1 Q−1

1 V1 +W>2 Q−1
2 V2).

An expression can be written for P2 = 〈(x2− x̃2)(x2− x̃2)
>〉 as well.

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 72 / 136



Bayes Linear/Gaussian Estimation

However, using the matrix inversion lemma:
One can obtain

x̃2 = x̃1 +K2[V2−W2x̃1]

ñ2 = V2−W2x̃2

P2 = P1−K2W2P1.

K2 := P1W>2 [W2P1W>2 +Q2]
−1.

matrix inversion lemma, (
A B

B> C

)
where A> = A, C> = C, B rectangular and dimensionally commensurate. Then

(C−B>A−1B)−1 = C−1−C−1B>(BC−1B>−A)BC−1

AB>(C+BAB>)−1 = (A−1 +B>C−1B)−1B>C−1 .
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Bayes Linear/Gaussian Estimation

Kalman Filter

Forecast

X∗ = MX(t)+B(t) t = 0,1, . . . ,

P∗ = MP(t)M>

in the absence of any other information, X∗ is a state prediction, P∗ is state
uncertainty prediction. Analysis

X(t+1) = X∗+K(t+1)[Y(t+1)−H(t+1)X∗],

P(t+1) = P∗−K(t+1)H(t+1)P∗

where the Kalman Gain Matrix is

K(t+1) := P∗H(t+1)>[H(t+1)P∗H(t+1)>+R(t+1)]−1

X(0) and P(0) are known.

cf. Review in Jazwinski, Dover Pub
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Bayes Linear/Gaussian Estimation

Estimation Using Perfect Models

Find the model parameters m such that

A(m)x−b = 0

m is the vector of parameters. Use field data

y = Hx+ ε.

Cast as constrained optimization problem:

min
m,x

1
2
||Hx− y||2C +βR(m)

subject to A(m)x−b = 0.
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Bayes Linear/Gaussian Estimation

Estimation Using Perfect Models

Conventional Approach: INCORPORATE CONSTRAINT:

min
m

1
2
||HA(m)−1b− y||2C +βR(m).

Very compute-intensive:

Each evaluation of the objective function requires a solution to the
forward problem.

Evaluating the gradient requires the solution to the adjoint problem.
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Bayes Linear/Gaussian Estimation

Estimation Using Perfect Models

Alternative Approach: ALL-IN-ONE OR AUGMENTED:

L (x,m,λ ) =
1
2
||Hx− y||2C +βR(m)+λ

T(A(m)x−b).

The Euler-Lagrange equations are:

Lλ = A(m)x−b = 0,

Lx = A(m)†
λ +H†(Hx− y) = 0,

Lm = β
∂R

∂m
+

∂ [A(m)x]
∂m

†

λ = 0.

Solve using Newton (preconditioned Krylov method). Same
strengths-weaknesses of unconstrained method, but faster (only need
approximate Hessian).
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Bayes Linear/Gaussian Estimation

Estimation Using Non-Perfect Models

Find the model parameters m such that

A(m)x−b = µ

m is the vector of parameters. Use field data

Hx− y = ε.

Known: µ ∼N (0,Cε) and ε ∼N (0,Cµ).

Construct the over(under) determined system

W(m)x−V = Θ.

Solve the weighted-row least-squares problem.
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Bayes Linear/Gaussian Estimation

Model and Observations:

W(m)x−V = Θ,

Θ∼N (0,σ).

Find x̃ , mean, such that E(θ>θ) is minimized.
Find the uncertainty U := E[(x− x̃)(x− x̃)>].
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Time Dependent Problems

Time Dependent Problems?

Consider a discrete time process...
Still can use Least Squares: suppose know x0 and your model is

xn+1 = Mxn +Bn +Un +Nn,

n = 0,1,2.... Is your (discrete) linear time dependent model. Then it is easy to
show that

xn = Lx0 + f (Bn)+g(Un)+N

so we are back to solving a linear equation and can use Least Squares... but it
might be more convenient to solve the estimation problem sequentially...
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Time Dependent Problems

Time Dependent Problems

Task: want to find X̃n, n = 0,1, ... and uncertainty Pn that minimizes the
posterior covariance of X at each n, given observations

Yn = HXn + εn,

n = 0,1,2.... Here 〈εn〉= 0, 〈εnε>n 〉= Rn. H is known as the observation
matrix.
The model for the process is

Xn+1 = MXn +Bn +ΓUn,

n = 0,1,2.... We assume 〈Un〉= 0, 〈UnU>n 〉= Qn,
Note ΓU can be thought of as model noise (or it could be thought of as a
CONTROLLER)
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Time Dependent Problems

Kalman Filter, from n = 0 to n = 1:

Have an estimate of X0, called X̃0 with uncertainty P0. The initial error is
γ0 = X̃0−X0. Forecast: X(1,−) = MX0 +B0, The control (or noise) has zero mean and thus a best

estimate is to set to zero. The −1 indicates that no data has been used in the estimate.

γ(1) = X(1,−)−X1 = MX̃0 +B0− (MX0 +B0 +ΓU0) = Mγ0−ΓU0.

the erroneous forecast has 2 components: the propagated erroneous portion of X̃0 and the unknown control term.

〈γ1γ
>
1 〉= 〈(Mγ0−ΓU0)(Mγ0−ΓU0)

>〉= MP0M>+ΓQ0Γ
> := P(1,−).

Use the measurement: Y1 = H1X1 +N1: Analysis

X̃1 = X(1,−)+K1[Y1−H1X(1,−)],
P1 = P(1,−)−K1H1P(1,−)

where the Kalman Gain Matrix is K1 := P(1,−)H>1 [H1P(1,−)H>1 +R1]
−1

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 82 / 136



Time Dependent Problems

Kalman Filter Equivalent in Least Squares

The (sequential) Kalman filter estimate is also given by minimizing

E = [X(1,−)− X̃1]
>P(1,−)−1[X(1,−)− X̃1]

+ [Y1−H1X̃1]
>R−1

1 [Y1−H1X̃1].
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Time Dependent Problems

Kalman Filter

Forecast

X∗ = MXn +Bn n = 0,1, . . . ,

P∗ = MPnM>+ΓQnΓ
>

Analysis

X(n+1) = X∗+K(n+1)[Y(n+1)−H(n+1)X
∗],

P(n+1) = P∗−K(n+1)H(n+1)P
∗

where the Kalman Gain Matrix is

K(n+1) := P∗H>(n+1)[H(n+1)P
∗H>(n+1)+R(n+1)]

−1

X0 and P0 are known.
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Time Dependent Problems

Kalman Filter

The typical filter estimate, here observations have low variance:

At filtering times there’s a forecast correction due to the data (ANALYSIS).
Between filtering times the uncertainty grows due to model errors.
Image from L. Wu, T. H. Skaggs, P. J. Shouse and J. E. Ayars Soil Sci Soc. Amer (2000)
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DEMOS

Example: Feature Tracking

(Loading breakmovie)

Green is data and Red is the Ex-
tended Kalman Filter Estimate

Uses 60 mpg frames of a
basketball bouncing.
(Data is (2d) edge of
b’ball, found by edge
detection)

First order regression
equation for the model.

taken from Mathworks, Inc, created Ali Reza Kashanipour
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DEMOS

Example: Forced Coupled Oscillators

M
d2q
dt2 +R

dq
dt

+Lq = f L is the coupling terms via stiffness k, R = [r1,r2]
>.

Xn+1 = AXn +F

where X = [q1 q2 p1 p2]
>, and

A =


1 0 dt 0
0 1 0 dt
−2α1 α2 β1 0

α2 −2α1 0 β2


αi = dt k/mi, and βi = 1−dt ri/mi, i = 1,2. Also F = [0 0 f1/m1 f2/m2]

>.
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DEMOS

Kalman Filter Problem

Estimate Mean Position and Uncertainty of Masses
The forcing terms are ”noisy” and give the experiment some uncertainty
in the observations.

Observations of the position were made with a noisy device

The goal is to use the model and the partial observations of the position
of the masses to produce a filtered estimate of the vector
X = [p1 p2 q1 q2]

>

We will vary the measurement uncertainty, the frequency at which we
sample the position
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DEMOS

Conditions for the Experiment

time step: 0.01
number of time steps: 2000
variance on forcing of q1=0.75
observed q2 at every 15th time step
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DEMOS

Results

variance in measurement error = 0.05
variance in model error = 0.08
Compare norm of difference between truth to filtered as well as truth to
unfiltered:

Maximum L2 in filtered position of q1 and q2 = 27
Maximum L2 in unfiltered position of q1 and q2 = 37
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DEMOS

Results

variance in measurement error = 0.05
variance in model error = 0.08
Compare norm of difference between truth to filtered as well as truth to
unfiltered:

Maximum L2 in filtered position of q1 and q2 = 24.7
Maximum L2 in unfiltered position of q1 and q2 = 42.3
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4D VAR

4D VAR: The Variational Approach

Goal: Find a posterior variance minimizer estimate û(x, t) of the mean
trajectory of u(x, t), which obeys a noisy PDE and a noisy discrete data set dm

P(u(x, t)|dm=1:M) ∝ Likelihood×Prior.

Model informs prior,

data informs the likelihood

Assume (data and model) erros are normal, delta-correlated, with known
variance.
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4D VAR

The (Strong) Problem

MODEL:

Gu(x, t) = F(x, t)+ f (x, t), 0≤ x≤ L, 0≤ t ≤ T,

u(x,0) = I(x)+ i(x), 0≤ x≤ L

u(0,r) = B(t)+b(t), 0≤ t ≤ T,

DATA:

dm = u(xm, tm)+ εm, m = 1,2, ..,M.

where G := ∂t + c∂x, and c > 0
f (x, t), i(x),b(t),εm are normal noise processes with known variances:

〈f (x, t)f (x′, t′)〉=W−1
f ,〈i(x)i(x′)〉=W−1

i ,〈b(t)b(t′)〉=W−1
b , 〈εmε

′
m〉=w−1.
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4D VAR

The Variational Problem

Let

J(u) = Wf

∫ T

0
dt
∫ L

0
dx f (x, t)2 +Wi

∫ L

0
dx i(x)2 +Wb

∫ T

0
dt b(t)2

+ w
M

∑
m=1

ε
2
mδ

where δ := δ (x− xm)δ (t− tm)

J(û+δu) = J(û)+O(δu2),

since we force δJ(û) = 0.
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4D VAR

0 = δJ(û) = Wi

∫ L

0
dx [û(x,0)− I(x)]δu(x,0)

+ Wb

∫ T

0
dt [û(0, t)−B(t)]δu(0, t)

+
∫ L

0
dx
∫ T

0
dt [−Gλ ]δu(x, t)

+
∫ L

0
dx λδu|Tt=0 +

∫ T

0
dt cλδu(x, t)|Lx=0

+ w
∫ L

0
dx
∫ T

0
dt

M

∑
m=1

[û(x, t)−dm]δu(x, t)δ

where λ = Wf (Gû−F).
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4D VAR

The Euler-Lagrange Equations

With λ = Wf (Gû−F),
BACKWARD PROBLEM

−Gλ = −
M

∑
m=1

[û(x, t)−dm]δ

λ (x,T) = 0, λ (L, t) = 0,

FORWARD PROBLEM

Gû = F+W−1
f λ

û(x,0) = I(x)+W−1
i λ (x,0), û(0, t) = B(t)+ cW−1

b λ (0, t).

The best estimates of f , i,b:

f̂ (x, t) = W−1
f λ (x, t), î(x) = W−1

i λ (x,0), b̂(t) = cW−1
b λ (0, t).
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4D VAR

The Representer and the Reproducing Kernel

Let rm(x, t) and αm(x, t) be the m = 1 : M representers and adjoints,
ADJOINT PROBLEM:

−Gαm = δ (x− xm)δ (t− tm),

αm(x,T) = 0, αm(L, t) = 0

FORWARD PROBLEM:

Grm = W−1
f αm,

rm(x,0) = W−1
i α(x,0), rm(0,x) = cW−1

b αm(0, t).
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4D VAR

ADJOINT PROBLEM:

−Gαm = δ (x− xm)δ (t− tm),

αm(x,T) = 0, αm(L, t) = 0

FORWARD PROBLEM:

Grm = W−1
f αm ,

rm(x,0) = W−1
i α(x,0), rm(0,x) = cW−1

b αm(0, t).

û = uF(x, t)+
M

∑
m=1

βmrm(x, t)
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4D VAR

Need to find βm’s in

û = uF(x, t)+
M

∑
m=1

βmrm(x, t).

Substitute û into the forward problem equation Gû = F+W−1
f λ (x,0),

to find

Gû = GuF +
M

∑
m=1

βmGrm = F+W−1
f

M

∑
m=1

βmαm.

Thus

λ = Wf [Gû−F] =
M

∑
m=1

βmαm.
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4D VAR

Further, using −Gλ =−w∑
M
m=1[û(x, t)−dm]δ (x− xm)δ (t− tm) from the

backward problem,

−Gλ = −
M

∑
m=1

βmGαm =
M

∑
m=1

βmδ (x− xm)δ (t− tm) =

− w[û(x, t)−dm]δ (x− xm)δ (t− tm).

Which implies

βm =−w[û(x, t)−dm]δ (x− xm)δ (t− tm).

Substituting û = uF(x, t)+∑
M
m=1 βmrm(x, t),

βm =−w[uF(xm, tm)+
M

∑
`=1

β`r`(xm, tm)−dm].

Hence,
M

∑
`=1

[r`(xm, tm)+w−1
δ`,m]β` = dm−uF(xm, tm).
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4D VAR

The best estimate is

û = uF(x, t)+
M

∑
m=1

βmrm(x, t),

where
M

∑
`=1

[r`(xm, tm)+w−1
δ`,m]β` = dm−uF(xm, tm),

or
[R+w−1I]β = d−uF,

Finally:
û(x, t) = uF(x, t)+(d−uF)

>[R+w−1I]−1r(x, t).
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Nonlinear Problems Nonlinear Estimation

Nonlinear Non-Gaussian Problems?

Forecast, not much of a problem:

X̃ = N(X(t),B(t))

But not clear how to propagate uncertainty P(t+1).

Extended Kalman Filter used extensively on nonlinear problems: linearize
about X(t) and use closure ideas for moments.
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Nonlinear Problems Nonlinear Estimation

The EKF Results1

Figure: 10% uncertainty, ∆t = 1.

Figure: 20% uncertainty, ∆t = 1.

Figure: 20% uncertainty, ∆t = 0.25.

1R. Miller, M. Ghil, P. Gauthiez, Advanced data assimilation in strongly nonlinear
dynamical systems, J. Atmo. Sci. 51 1037-1056 (1994)
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Nonlinear Problems Nonlinear Estimation

Rao Blackwellisation: Reduce Variance

An essential dimensional reduction stage: identify linear/Gaussian elements
in your state vector and use Kalman (or least squares) on these....it’s optimal!

Rewrite x = xl,xn, then

p(X|Y) ∝ p(xl|xn,Y)p(xn|Y).

use your nonlinear/non-Gaussian sampler on p(xn|Y).

var(E[g(xl |xn)|xn)]+E[var(g(xl ,xn)|xn)] = var(g(xl |xn))

thus, var(Eg(xl |xn)]|xn)]≤ var(g(xl |xn)).

cf., See Karlsson, Sh on, Gustaffson, IEEE Trans. Sig, Proc. 2005
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Nonlinear Problems Nonlinear Estimation

Other Approaches on Nonlinear/Non-Gaussian Problems

Optimal (variance-minimizer) KSP (Kushner, Stratonovich, Pardoux), early 60’s

4D-Var/Adjoint (Maximum Likelihood) (Wunsch, McLaughlin, Courtier, late 80’s)

ensemble KF (Evensen, ’97)

Mean Field Variational (Rayleigh-Ritz on the Kullback-Leibler
Divergence) (Eyink, Restrepo, ’01)

Parametrized Resampling Particle Filter (Kim, Eyink, Restrepo, Alexander, Johnson, ’02)

Langevin Sampler (A. Stuart, ’05)

Path Integral Monte Carlo (Restrepo ’07. Alexander, Eyink & Restrepo, ’05)

Diffusion Kernel Filter (Krause, Restrepo, ’09)

Displacement Assimilation (Venkataramani, Rosenthal, Mariano, Restrepo, ’13)

Mean Stochastic Sampler (Harlim and Majda, ’10)

Restrepo, Leaf, Griewank, Circumventing storage limitations in variational data assimilation, SIAM J. Sci Comp, ’95
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Nonlinear Problems Nonlinear Estimation

enKF Most Favored in Practice

The enKF (”state-of-the-art”)

Use model for forecast X̃ = N(X(t), t).

Update the uncertainty using Monte Carlo.

Pros and Cons:

Can handle legacy code easily

Gaussian assumption on the analysis: X(t+1) = X̃+K(t)(y−H(X̃)).

Requires full model runs

Ad-hoc

G. Evensen, Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res. 99, 10143-10162.
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Nonlinear Problems Nonlinear Estimation

PIMC The Path Integral Monte Carlo

J. Restrepo, A Path Integral Method for Data Assimilation, Physica D, 2007,
F. Alexander, G. Eyink, J. Restrepo, Accelerated Monte-Carlo for Optimal Estimation of Time Series, J. Stat. Phys., 2005
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Nonlinear Problems Nonlinear Estimation

PIMC The Path Integral Monte Carlo

Optimal, on the discretized model

Simple to implement, but very subtle

Can handle legacy code

Relies on sampling

Can yield a variety of different estimators

J. Restrepo, A Path Integral Method for Data Assimilation, Physica D, 2007,
F. Alexander, G. Eyink, J. Restrepo, Accelerated Monte-Carlo for Optimal Estimation of Time Series, J. Stat. Phys., 2005
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Nonlinear Problems Nonlinear Estimation

PIMC The Path Integral Monte Carlo
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J. Restrepo, A Path Integral Method for Data Assimilation, Physica D, 2007,
F. Alexander, G. Eyink, J. Restrepo, Accelerated Monte-Carlo for Optimal Estimation of Time Series, J. Stat. Phys., 2005
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Nonlinear Problems Nonlinear Estimation

PIMC The Path Integral Monte Carlo

−
3

−
2

−
1

0
1

2
3

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

S
O

L
U

T
IO

N

X

H
O

T

C
O

L
D −7 −6 −5 −4 −3 −2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

J. Restrepo, A Path Integral Method for Data Assimilation, Physica D, 2007,
F. Alexander, G. Eyink, J. Restrepo, Accelerated Monte-Carlo for Optimal Estimation of Time Series, J. Stat. Phys., 2005

JUAN M. RESTREPO Group Leader Uncertainty Quantification Group (UQG) ( Mathematics Department Atmospheric Sciences and Physics Departments University of Arizona)The Mathematics Institutes’ MODERN MATH WORKSHOP September, 2010 110 / 136



Nonlinear Problems Nonlinear Estimation

PIMC The Path Integral Monte Carlo
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Nonlinear Problems Nonlinear Estimation

PIMC The Path Integral Monte Carlo
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Nonlinear Problems Nonlinear Estimation

Bayesian Statement

P(x|y) ∝ Likelihood×Prior.

Use data for likelihood.

Use model for prior.

P(x|y) ∝ e−Amodele−Adata := e−A (x).
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Nonlinear Problems Nonlinear Estimation

Amodel

dx = f (x, t)dt+[2D(x, t)]1/2dW

is discretized:

xn+1 = xn +∆tf (xn, tn)+ [2D(xn, tn)]1/2[Wn+1−Wn]

n = 0,1, ...,T−1

Amodel ≈
T

∑
n=1

[(xn+1− xn−∆tf (xn, tn))>D(xn, tn)−1 (xn+1− xn−∆tf (xn, tn))],

if Prob(∆W) ∝ exp(−∆W2/D).
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Nonlinear Problems Nonlinear Estimation

Adata

ym = H(xm)+ [2R[xm, tm)]1/2
ηm

m = 1,2, . . . ,M.

Adata =
M

∑
m=1

[(ym−H(xm))
>R(xn, tn)−1 (ym−H(xm))],

if Prob(η) ∝ exp(−η2/R).
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Nonlinear Problems Samplers

MCMC Samplers

P(x|y) ∝ e−Amodele−Adata := e−A (x).

The Path Integral Monte Carlo practicality depends on fast sampling:

Multigrid (UMC)

Langevin Sampler (LS)

Hybrid Monte Carlo (HMC)

Shadow Hybrid MC (sHMC)

Riemannian Manifold Hamiltonian Monte Carlo (RM-HMC)

generalized Hybrid Monte Carlo (gHMC)
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Nonlinear Problems Samplers

(HMC) Hybrid Markov Chain Monte Carlo

Proposals generated by
solving Hamiltonian
system in fictitious time
τ .

Accept/reject via
Metropolis Hastings
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Nonlinear Problems Samplers

HMC Algorithm

Let qn(τ = 0) = xn.

To each qn, a conjugate generalized momemtum, pn, is assigned.

The momenta pn give rise to a kinetic contribution
K = ∑

T
n=1 p>n M−1pn/2.

The Hamiltonian of the system H = A (q)+K(p).
The dynamics are:

∂qn

∂τ
= M−1pn

∂pn

∂τ
= Fn where Fn =−grad(A (q)).

Solve using Verlet integrator (detailed balance).

Accept/Reject Metropolis/Hastings.
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Nonlinear Problems Samplers

Why does HMC work? What are good HMC properties?

Write probability Π(q) = 1
ZΠ

e−A (q):

Sampling π(q,p) = 1
Zπ

e−H (q,p) ∼ 1
Z e−A (q) samples Π(q).

Gradient dynamics makes system search through configuration space
more efficiently.

Moves in qn are linear in pn, i.e., ∂q
∂τ

= M−1p

A (q) and grad(A (q)) should be easily evaluated.
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Nonlinear Problems Samplers

Sampler Efficiency Estimates

Sampler Efficiency: key to choosing and tuning sampler

Computational Cost: O(NT)r nmethod(p,L)

p :=< Pacc >=< min{1,exp[−∆H ]}>∝ erfc
(1

2 δτm(NT)1/2
)
.

c(L) :=< H (0)H (0+L)>. Depends on problem dimension and state
space characteristics.
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Nonlinear Problems Samplers

RM-HMC Algorithm2

Hamiltonian replaced by:

H = A (q)+
1
2

p>G(q)−1p

where the non-degenerate Fisher information matrix G := E{∇A ∇A >}

Challenges:

find a time-reversible/volume-preserving discrete integrator for
Hamiltonian problem.

optimize its computational efficiency.

2Girolami, Calderhead, Chin, preprint, 2009.
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Nonlinear Problems Samplers

Decrease decorrelation length L: gHMC Algorithm

Hamiltonian dynamics replaced by:

∂qn

∂τ
= CM−1pn

∂pn

∂τ
= C>F(qn)

where C ∈RT×T matrix

Challenge: find C that leads to a significant reduction in the sample
decorrelation length.

We used the circulant matrix C = circ(1,e−α ,e−2α , . . . ,e−Tα).
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Nonlinear Problems Samplers

Sampler Efficiency Comparison

Table: T is the number of time steps, (·) is the standard deviation on the number of
samples, [α] used in C; J is the number of τ time steps.

T +1 HMC (J=1) HMC (J=8) UMC gHMC (J=1)
8 900(125) 170(7) 800(40) 40(8) [0.20]
16 5300(1600) 560(20) 1040(60) 60(10) [0.10]
32 13300(8300) 2700 (140) 1430(100) 200(30) [0.05]
64 30000(7800) 2800(400) 1570(100) 420(70) [0.0245]
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Nonlinear Problems Samplers

Looking Forward...

Continued work on assimilation methods that can handle larger
problems.

Continue improving nonlinear/non-Gaussian assimilation methods.

Data and models can combine to improve forecasts...but can they be used
to make better forecasts?

Feature-based data assimilation.

Displacement data assimilation.

Surrogate models built from data only.
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Nonlinear Problems Samplers

Feature-Based, Lagrangian Data Blending
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Nonlinear Problems Samplers

Improving Hurricane Predictions
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Nonlinear Problems Samplers

Improving Hurricane Predictions

Estimated Property Damage
Katrina $108B

Sandy $65B

Ike $30B

Andrew $27B

· · ·
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Nonlinear Problems Samplers

Goal: Better Predictions using Added Constraints

Better estimates of hurricane tracks (NSF)

Better estimates of oil slick geometry and location in ocean flows
(BP/GoMRI)

Collaborators:
Steven Rosenthal (Arizona)
Shankar Venkataramani (Arizona)
Arthur Mariano (U Miami)
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Nonlinear Problems Samplers

Displacement Maps via Canonical Transformations

Find
min ||q(M(x))−q0||22.

here (x,y)M
→(X,Y).

In 2-Dimensions, the generating function is G(X,y) = Xy+ f (X,y).

x =
∂G
∂y

= X+ fy(X,y)

Y =
∂G
∂X

= y+ fX(X,y).

invertible if fyX >−1.
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Nonlinear Problems Samplers

Parameterizing Position Error

Example:
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Nonlinear Problems Samplers

The strain tensor σ takes the form

σ =

[
x∆x y∆x
x∆y y∆y

]
=

1
1+ fyX

[
−fyX −fyy

fXX fXy−|H[f ]|

]
where H[f ] is the Hessian matrix of f . The diagonal terms determine the
normal strains in the map, while the off-diagonal terms define the shear
strains. The penalty functional is now given by

J [f ] =
∫

D
[q(f )−q0]

2 +α

[
(x∆x)2 +(y∆y)2

]
+β

[
(y∆x)2 +(x∆y)2

]
dxdy

where α and β weight the normal and shear strains, respectively.
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Nonlinear Problems Samplers

Displacement and Amplitude Assimilation

Combine ”Traditional” Amplitude Assimilation with Displacement
Assimilation:

Basic Algorithm (from tm to tm+1):
At tm: Perform displacement assimilation.

At tm+1: Perform amplitude assimilation.
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Further Information

Further Information

Juan M. Restrepo
www.physics.arizona.edu/∼restrepo

Uncertainty Quantification Group
www.physics.arizona.edu/∼restrepo/UQ.html

UQGQG
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