Nek5000 and Spectral Element Tutorial

Paul Fischer
Mathematics and Computer Science Division
Argonne National Laboratory

Joint work with:
Christos Frouzakis ETHZ
Stefan Kerkemeier ETHZ / ANL
Katie Heisey ANL
Frank Loth U. Akron
James Lottes ANL / Oxford
Elia Merzari ANL
Aleks Obabko ANL
Tamay Ozgokmen U. Miami
David Pointer ANL
Philipp Schlatter KTH
Ananias Tomboulides U. Thessaloniki
and many others…

Turbulence in an industrial inlet.
Overview

0. Background

I. Scalable simulations of turbulent flows
 ❑ Discretization
 ❑ Solvers
 ❑ Parallel Implementation

II. A quick demo…
Recent SEM-Based Turbulence Simulations

Enhanced Heat Transfer with Wire-Coil Inserts w/ J. Collins, ANL

Heat Transfer: Exp. and Num.

Film Cooling
Duggleby et al., TAMU

Pipe Flow:
\[Re_\tau = 550 \]
\[Re_\tau = 1000 \]
G. El Khoury, KTH

Mathematics and Computer Science Division, Argonne National Laboratory
Validation: Separation in an Asymmetric Diffuser
Johan Ohlsson*, KTH

- Challenging high-Re case with flow separation and recovery
- DNS at Re=10,000: E=127750, N=11, 100 convective time units
- Comparison with experimental results of Cherry et al.

Axial Velocity

Pressure Recovery

\[u = 0.4U \]

*J. Fluid Mech., 650 (2010)
OECD/NEA T-Junction Benchmark

- $E=62000$ spectral elements of order $N=7$ ($n=21$ million)
 - Mesh generated with CUBIT
- Subgrid dissipation modeled with low-pass spectral filter
- 1 Run: 24 hours on 16384 processors of BG/P (850 MHz) ~ 33x slower than uRANS
- SEM ranked #1 (of 29) in thermal prediction.

Centerplane, side, and top views of temperature distribution
LES Predicts Major Difference in Jet Behavior for Minor Design Change

Results:

- Small perturbation yields $O(1)$ change in jet behavior
- Unstable jet, with low-frequency (20 – 30 s) oscillations
- Visualization shows change due to jet / cross-flow interaction
- MAX2 results not predicted by RANS
Nek5000: Scalable Open Source Spectral Element Code

- Developed at MIT in mid-80s (Patera, F., Ho, Ronquist)

- Spectral Element Discretization: High accuracy at low cost

- Tailored to LES and DNS of turbulent heat transfer, but also supports
 - Low-Mach combustion, MHD, conjugate heat transfer, moving meshes
 - New features in progress: compressible flow (Duggleby), adjoints, immersed boundaries (KTH)

- Scaling: 1999 Gordon Bell Prize; Scales to over a million MPI processes.

- Current Verification and validation:
 > 900 tests performed after each code update
 > 200 publications based on Nek5000
 > 175 users since going open source in 2009
 > …
217 Pin Problem, $N=9$, $E=3\times10^6$:

- 2 billion points
- BGQ – 524288 cores
 - 1 or 2 ranks per core
- 60% parallel efficiency at 1 million processes
- 2000 points/process

→ Reduced time to solution for a broad range of problems
Influence of Scaling on Discretization
Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of small features (size \(\lambda \)) over distances \(L \gg \lambda \). If speed \(\sim 1 \), then \(t_{\text{final}} \sim L/\lambda \).

- Dispersion errors accumulate linearly with time:
 \[
 \sim |\text{correct speed} - \text{numerical speed}| \ast t
 \]
 \[
 \rightarrow \text{error}_{t_{\text{final}}} \sim (L/\lambda) \ast |\text{numerical dispersion error}| \\
 \]

- For fixed final error \(\varepsilon_f \), require: numerical dispersion error \(\sim (\lambda/L)\varepsilon_f, \ll 1 \).
Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of small features (size λ) over distances $L \gg \lambda$. If speed ~ 1, then $t_{\text{final}} \sim L / \lambda$.

- Dispersion errors accumulate linearly with time:

 $\sim |\text{correct speed} – \text{numerical speed}| \times t$
 \[\rightarrow \text{error}_{t_{\text{final}}} \sim (L / \lambda) \times |\text{numerical dispersion error}| \]

- For fixed final error ε_f, require: numerical dispersion error $\sim (\lambda / L)\varepsilon_f$, $\ll 1$.

High-order methods can efficiently deliver small dispersion errors.

(Kreiss & Oliger 72, Gottlieb et al. 2007)

Our objective is to realize the advantage of high-order methods, at low-order costs.
Motivation for High-Order

High-order accuracy is uninteresting unless

- Cost per gridpoint is comparable to low-order methods
- You are interested in simulating interactions over a broad range of scales…

Precisely the type of inquiry enabled by HPC and leadership class computing facilities.
Incompressible Navier-Stokes Equations

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}
\]

\[
\nabla \cdot \mathbf{u} = 0
\]

Key algorithmic / architectural issues:

- Unsteady evolution implies many timesteps, significant reuse of preconditioners, data partitioning, etc.

- \(\text{Div } \mathbf{u} = 0 \) implies long-range global coupling at each timestep \(\rightarrow \) iterative solvers
 - communication intensive
 - opportunity to amortize adaptive meshing, etc.

- Small dissipation \(\rightarrow \) large number of scales \(\rightarrow \) large number of gridpoints for high Reynolds number \(Re \)
Navier-Stokes Time Advancement

\[
\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla p + \frac{1}{Re} \nabla^2 u
\]
\[\nabla \cdot u = 0\]

- Nonlinear term: *explicit*
 - \(k\)-th order backward difference formula / extrapolation \((k = 2\) or \(3\))
 - \(k\)-th order characteristics \((\text{Pironneau '82, MPR '90})\)

- Linear Stokes problem: pressure/viscous decoupling:
 - 3 Helmholtz solves for velocity \("easy" \(w/\ \text{Jacobi-precond.CG}\))
 - (consistent) Poisson equation for pressure \((\text{computationally dominant})\)

- For LES, apply grid-scale spectral filter \((\text{F. & Mullen 01, Boyd '98})\)
 - in spirit of HPF model \((\text{Schlatter 04})\)
Timestepping Design

- **Implicit:**
 - symmetric and (generally) linear terms,
 - fixed flow rate conditions

- **Explicit:**
 - nonlinear, nonsymmetric terms,
 - user-provided rhs terms, including
 - Boussinesq and Coriolis forcing

- **Rationale:**
 - \(\text{div } u = 0 \) constraint is fastest timescale
 - Viscous terms: explicit treatment of 2nd-order derivatives \(\rightarrow \Delta t \sim O(\Delta x^2) \)
 - Convective terms require only \(\Delta t \sim O(\Delta x) \)
 - For high Re, temporal-spatial accuracy dictates \(\Delta t \sim O(\Delta x) \)
 - Linear symmetric is “easy” – nonlinear nonsymmetric is “hard”
BDF2/EXT2 Example

Consider the convection-diffusion equation,
\[
\frac{\partial u}{\partial t} + c \cdot \nabla u = \nu \nabla^2 u.
\]

Discretize in space:
\[
B\frac{du}{dt} + Cu = -\nu Au, \quad (A \text{ is SPD})
\]

Evaluate each term at \(t^n \) according to convenience:
\[
B\frac{du}{dt}\bigg|_{t^n} = B\frac{3u^n - 4u^{n-1} + u^{n-2}}{2\Delta t} + O(\Delta t^2)
\]
\[
Cu\bigg|_{t^n} = 2Cu^{n-1} - Cu^{n-2} + O(\Delta t^2)
\]
\[
\nu Au\bigg|_{t^n} = \nu Au^n
\]
BDFk/EXTk

- BDF3/EXT3 is essentially the same as BDF2/EXT2
 - $O(\Delta t^3)$ accuracy
 - essentially same cost
 - accessed by setting Torder=3 (2 or 1) in .rea file

- For convection-diffusion and Navier-Stokes, the “EXTk” part of the timestepper implies a CFL (Courant-Friedrichs-Lewy) constraint

$$\max_{x \in \Omega} \frac{|u| \Delta t}{\Delta x} \approx 0.5$$

- For the spectral element method, $\Delta x \sim N^{-2}$, which is restrictive.
 - We therefore often use a characteristics-based timestepper.
 (IFCHAR = T in the .rea file)
Characteristics Timestepping

- Apply BDFk to material derivative, e.g., for k=2:
 \[
 \frac{Du}{Dt} := \frac{\partial u}{\partial t} + c \cdot \nabla u
 \]
 \[
 = \frac{3u^n - 4\tilde{u}^{n-1} + \tilde{u}^{n-2}}{2\Delta t} + O(\Delta t^2)
 \]

- Amounts to finite-differencing along the characteristic leading into \(x_j\)
Characteristics Timestepping

- Δt can be >> Δt_{CFL} \quad (e.g., \Delta t \sim 5-10 \times \Delta t_{CFL})

- Don’t need position (e.g., X_j^{n-1}) of characteristic departure point, only the value of \(u^{n-1}(x) \) at these points.

These values satisfy the pure hyperbolic problem:

\[
\frac{\partial \tilde{u}}{\partial s} + c \cdot \nabla \tilde{u} = 0, \quad s \in [t^{n-1}, t^n]
\]

\[
\tilde{u}(x, t^{n-1}) := u^{n-1}(x),
\]

which is solved via explicit timestepping with \(\Delta s \sim \Delta t_{CFL} \)
Spatial Discretization: Spectral Element Method

(Patera 84, Maday & Patera 89)

- Variational method, similar to FEM, using \(GL \) quadrature.

- Domain partitioned into \(E \) high-order quadrilateral (or hexahedral) elements (decomposition may be nonconforming - localized refinement)

- Trial and test functions represented as \(N \)th-order tensor-product polynomials within each element. \((N \sim 4 -- 15, \text{typ.})\)

- \(EN^3 \) gridpoints in 3D, \(EN^2 \) gridpoints in 2D.

- Converges exponentially fast with \(N \) for smooth solutions.

3D nonconforming mesh for arteriovenous graft simulations:
\(E = 6168 \) elements, \(N = 7 \)

Mathematics and Computer Science Division, Argonne National Laboratory
Spectral Element Convergence: Exponential with N

- 4 orders-of-magnitude error reduction when doubling the resolution in each direction.
- Benefits realized through tight data-coupling.
- For a given error,
 - Reduced number of gridpoints
 - Reduced memory footprint.
 - Reduced data movement.

Exact Navier-Stokes Solution (Kovazsnay ‘48)

\[
\begin{align*}
\nu_x &= 1 - e^{\lambda x} \cos 2\pi y \\
\nu_y &= \frac{\lambda}{2\pi} e^{\lambda x} \sin 2\pi y \\
\lambda &= \frac{Re}{2} - \sqrt{\frac{Re^2}{4} + 4\pi^2}
\end{align*}
\]
Spectral Element Discretization

\[u_t + c \cdot \nabla u = \nu \nabla^2 u \]

Find \(u \in X_0^N \subset H^1_0 \) such that

\[(v, u_t)_N + (v, c \cdot \nabla u)_M = \nu (\nabla v, \nabla u)_N \quad \forall v \in X_0^N, \]

- \((f, g)_M := \sum_{j=0}^{M} \rho_j M f(\xi_j^M) g(\xi_j^M), \quad (1-D, \Omega = [-1, 1])\)

- \(\xi_j^M, \rho_j^M\) — \(M\)th-order Gauss-Legendre points, weights.

2D basis function, \(N=10\)

Mathematics and Computer Science Division, Argonne National Laboratory
Spectral Element Basis Functions

Tensor-product nodal basis:

\[u(x, y) \big|_{\Omega_e} = \sum_{i=0}^{N} \sum_{j=0}^{N} u_{ij}^e \, h_i(r) \, h_j(s) \]

\[h_i(r) \in \mathcal{P}_N(r), \quad h_i(\xi_j) = \delta_{ij} \]

\[\xi_j = \text{Gauss-Lobatto-Legendre quadrature points:} \]

- stability (not uniformly distributed points)
- allows pointwise quadrature (for most operators)
- easy to implement BCs and C^0 continuity

2D basis function, N=10

Mathematics and Computer Science Division, Argonne National Laboratory
Monomials and Lagrange interpolants on uniform points exhibit exponential growth in condition number.

With just a 7x7 system the monomials would lose 10 significant digits (of 15, in 64-bit arithmetic).
Attractive Feature of Tensor-Product Bases (quad/hex elements)

- **Local tensor-product form** (2D),

\[u(r, s) = \sum_{i=0}^{N} \sum_{j=0}^{N} w_{ij} h_i(r) h_j(s), \quad h_i(\xi_p) = \delta_{ip}, \quad h_i \in \mathbb{P}_N \]

allows derivatives to be evaluated as **fast** matrix-matrix products:

\[
\frac{\partial u}{\partial r} \bigg|_{\xi_i, \xi_j} = \sum_{p=0}^{N} u_{pj} \frac{d h_p}{d r} \bigg|_{\xi_i} = \sum_{p} \hat{D}_{ip} u_{pj} =: D_{r,u}
\]
Fast Operator Evaluation

Local matrix-free stiffness matrix in 3D on Ω^e,

$$
A^e u^e = \begin{pmatrix} D_r \\ D_s \\ D_t \end{pmatrix}^T \begin{pmatrix} G_{rr}^e & G_{rs}^e & G_{rt}^e \\ G_{rs}^e & G_{ss}^e & G_{st}^e \\ G_{rt}^e & G_{st}^e & G_{tt}^e \end{pmatrix} \begin{pmatrix} D_r \\ D_s \\ D_t \end{pmatrix} u^e
$$

Matrix free form:
- $7N^3$ memory ref's.
- $12N^4 + 15N^3$ op's.

$D_r = (I \otimes I \otimes \hat{D})$

$G_{rs}^e = J^e \circ B \circ \left(\frac{\partial r}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial s}{\partial y} + \frac{\partial r}{\partial z} \frac{\partial s}{\partial z} \right)^e$

- Operation count is only $O(N^4)$ not $O(N^6)$ [Orszag '80]
- Work is dominated by fast matrix-matrix products (D_r, D_s, D_t)
- Memory access is 7 x number of points
 - because of GLL quadrature, $G_{rr}, G_{rs},$ etc., are diagonal
Spectral Filter

- Expand in modal basis:
 \[u(x) = \sum_{k=0}^{N} \hat{u}_k \phi_k(r) \]

- Set filtered function to:
 \[\tilde{u}(x) = \hat{F}(u) = \sum_{k=0}^{N} \sigma_k \hat{u}_k \phi_k(r) \]

- Spectral convergence and continuity preserved. (Coefficients decay exponentially fast.)

- In higher space dimensions:
 \[F = \hat{F} \otimes \hat{F} \otimes \hat{F} \]
Filtering Cures High Wavenumber Instabilities

Free surface example:

![Graph showing error in OS Growth Rate](image)

Figure 6: Eigenmodes for free-surface film flow: (left, top) contours of vertical velocity v for unfiltered and (left, bottom) filtered solution at time $t = 179.6$; (right) error in growth rate vs. t.

Dealiasing

When does straight quadrature fail??

Double shear layer example:

High-strain regions are troublesome...
When Does Quadrature Fail?

Consider the model problem:

\[
\frac{\partial u}{\partial t} = -c \cdot \nabla u
\]

Weighted residual formulation:

\[
B \frac{du}{dt} = -Cu
\]

\[
B_{ij} = \int_\Omega \phi_i \phi_j \, dV = \text{symm. pos. def.}
\]

\[
C_{ij} = \int_\Omega \phi_i \mathbf{c} \cdot \nabla \phi_j \, dV
\]

\[
= -\int_\Omega \phi_j \mathbf{c} \cdot \nabla \phi_i \, dV - \int_\Omega \phi_i \phi_j \nabla \cdot \mathbf{c} \, dV
\]

\[
= \text{skew symmetric, if } \nabla \cdot \mathbf{c} \equiv 0.
\]

\[
B^{-1}C \quad \longrightarrow \text{imaginary eigenvalues}
\]

\textit{Discrete problem should never blow up.}
When Does Quadrature Fail?

Weighted residual formulation vs. spectral element method:

\[C_{ij} = (\phi_i, c \cdot \nabla \phi_j) = -C_{ji} \]

\[\tilde{C}_{ij} = (\phi_i, c \cdot \nabla \phi_j)_N \neq -\tilde{C}_{ji} \]

This suggests the use of over-integration (dealiasing) to ensure that skew-symmetry is retained

\[C_{ij} = (J\phi_i, (Jc) \cdot J\nabla \phi_j)_M \]

\[J_{pq} := h_q^N(\xi_p^M) \quad \text{interpolation matrix (1D, single element)} \]
Velocities model first-order terms in expansion of straining and rotating flows.

- Rotational case is skew-symmetric
- Over-integration restores skew-symmetry (Malm et al, JSC 2013)

\[u_t + c \cdot \nabla u = 0 \]

\begin{align*}
N=19, M=19 & & N=19, M=20 \\
 c = (-x, y) & & c = (-y, x)
\end{align*}
Excellent transport properties, even for *non-smooth* solutions

Convection of non-smooth data on a 32x32 grid \((K_1 \times K_1\) spectral elements of order \(N\)).

(cf. Gottlieb & Orszag 77)
Relative Phase Error for \(h \) vs. \(p \) Refinement: \(u_t + u_x = 0 \)

- \(x\)-axis = \(k / k_{max} \), \(k_{max} := n / 2 \) (Nyquist)
- Fraction of resolvable modes increased only through p-refinement
 – dispersion significantly improved w/ exact mass matrix (Guermond, Ainsworth)
- Polynomial approaches saturate at \(k / k_{max} = 2 / \pi \)
 \(\Rightarrow N = 8\text{-}16 \) ~ point of marginal return
Impact of Order on Costs

- To leading order, cost scales as number of gridpoints, regardless of approximation order. WHY?
Impact of Order on Costs

- To leading order, cost scales as number of gridpoints, regardless of SEM approximation order. **WHY?**

- Consider Jacobi PCG as an example:

 \[
 \begin{align*}
 z &= D^{-1} r \\
 r &= r^t z \\
 p &= z + \beta p \\
 w &= A p \\
 \sigma &= w^t p \\
 x &= x + \alpha p \\
 r &= r - \alpha p
 \end{align*}
 \]

- Six \(O(n)\) operations with order unity computational intensity.

- One matrix-vector product dependent on approximation order

- **Reducing** \(n\) is a direct way to reduce data movement.
For SEM, *memory* scales as number of gridpoints, n.

Work scales as nN, but is in form of *(fast)* matrix-matrix products.
What About Nonlinear Problems?

Are the high-order phase benefits manifest in linear problems evident in turbulent flows with nontrivial physical dispersion relations?
Nonlinear Example: NREL Turbulent Channel Flow Study

Accuracy: Comparison to several metrics in turbulent DNS, $Re_τ = 180$ (MKM’99)

Accuracy

Results: 7^{th}-order SEM needs an order-of-magnitude fewer points than 2^{nd}-order FV.
Nonlinear Example: NREL Turbulent Channel Flow Study

Test case: Turbulent channel flow comparison to DNS of MKM ’99.

Costs: Nek5000 & OpenFOAM have the same cost per gridpoint
Overview

I. Scalable simulations of turbulent flows
 - Discretization
 - Solvers
 - Parallel Implementation

II. A quick demo…
Scalable Linear Solvers

- Key considerations:
 - Bounded iteration counts as $n \to \infty$
 - Cost that does not scale prohibitively with number of processors, P

- Our choice:
 - Projection in time: extract available temporal regularity in $\{p^{n-1}, p^{n-2}, ..., p^{n-k}\}$
 - CG or GMRES, preconditioned with multilevel additive Schwarz
 - Coarse-grid solve:
 - XX^T projection-based solver
 - single V-cycle of well-tuned AMG
 \textit{(J. Lottes, 2010)}

Mathematics and Computer Science Division, Argonne National Laboratory
Projection in Time for $A\bar{x}^n = \bar{b}^n$ (A - SPD)

Given \bar{b}^n
- $\{\tilde{x}_1, \ldots, \tilde{x}_i\}$ satisfying $\tilde{x}_i^T A \tilde{x}_j = \delta_{ij}$,

- Set $\bar{x} := \sum \alpha_i \tilde{x}_i$, $\alpha_i = \tilde{x}_i^T b$ (best fit solution)
- Set $\Delta b := \bar{b}^n - A \bar{x}$

- Solve $A \Delta x = \Delta b$ to $tol \epsilon$ (black box solver)
- $x^n := \bar{x} + \Delta x$
- If ($l = l_{\text{max}}$) then (update X^l)
 - $\tilde{x}_1 = x^n / ||x^n||_A$
 - $l = 1$
else
 - $\tilde{x}_{l+1} = (\Delta x - \sum \beta_i \tilde{x}_i) / (\Delta x^T A \Delta x - \sum \beta_i^2)^{\frac{1}{2}}$
 - $\beta_i = \tilde{x}_i A \Delta x$
 - $l = l + 1$
endif
Initial guess for $A p^n = g^n$ via projection onto previous solutions

- $\| p^n - p^* \|_A = O(\Delta t') + O(\epsilon_{tol})$

Results with/without projection (1.6 million pressure nodes):

- 4 fold reduction in iteration count, 2 – 4 in typical applications

Similar results for pulsatile carotid artery simulations – 10^8-fold reduction in initial residual
Scalable Linear Solvers

- Key considerations:
 - Bounded iteration counts as \(n \to \infty \)
 - Cost that does not scale prohibitively with number of processors, \(P \)

- Our choice:
 - Projection in time – extract available temporal regularity in \(\{p_{n-1}, p_{n-2}, \ldots, p_{n-k}\} \)
 - CG or GMRES, preconditioned with multilevel additive Schwarz

- Coarse-grid solve:
 - FOR SMALL PROBLEMS: \(XX^T \) projection-based solver (default).
 - FOR LARGE PROBLEMS: single V-cycle of well-tuned AMG (Lottes)
Multilevel Overlapping Additive Schwarz Smoother

(Dryja & Widlund 87, Pahl 93, F 97, FMT 00, F. & Lottes 05)

\[z = Mz = \sum_{e=1}^{E} R_e^T A_e^{-1} R_e r + R_0^T A_0^{-1} R_0 r \]

Local Overlapping Solves: FEM-based Poisson problems with homogeneous Dirichlet boundary conditions, \(A_e \).

Coarse Grid Solve: Poisson problem using linear finite elements on entire spectral element mesh, \(A_0 \) (GLOBAL).

Mathematics and Computer Science Division, Argonne National Laboratory
Scaling Example: Subassembly with 217 Wire-Wrapped Pins

- 3 million 7th-order spectral elements (n=1.01 billion)
- 16384–131072 processors of IBM BG/P
- 15 iterations per timestep; 1 sec/step @ P=131072
- Coarse grid solve < 10% run time at P=131072

Strong Scaling

\[\eta = 0.8 \] @ P=131072

7300 pts/processor
Some Limitations of Nek5000

- **No steady-state NS or RANS:**
 - unsteady RANS under development / test – Aithal

- **Lack of monotonicity for under-resolved simulations**
 - limits, e.g., LES + combustion
 - Strategies under investigation: DG (Fabregat), Entropy Visc.

- **Meshing complex geometries:**
 - fundamental: meshing always a challenge; hex-based meshes intrinsically anisotropic
 - technical: meshing traditionally not supported as part of advanced modeling development
A common refinement scenario (somewhat exaggerated):

- Refinement propagation leads to unwanted elements in far-field.
- High aspect-ratio cells that are detrimental to iterative solver performance (F. JCP’97)

Refinement in region of interest yields unwanted high-aspect-ratio cells.
Alternative Mesh Concentration Strategies
Meshing Options for More Complex Domains

- **genbox**: unions of tensor-product boxes

- **prenek**: basically 2D + some 3D or 3D via extrusion (n2to3)

- **Grow your own**: 217 pin mesh via matlab; BioMesh

- **3rd party**: CUBIT + MOAB, TrueGrid, Gambit, Star CD

- **Morphing**
Morphing to Change Topography

do i=1,ntot
 argx = 2*pi*xm1(i,1,1,1)/lambda
 ym1(i,1,1,1) = ym1(i,1,1,1) + ym1(i,1,1,1)*A*sin(argx)
enddo
Stratified Flow Model

- **Blocking phenomena – Tritton**
- **Implemented as a rhs forcing:**

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} - \frac{1}{Fr^2} (\rho' - y);
\]

\[
\nabla \cdot \mathbf{u} = 0
\]

\[
\frac{\partial \rho'}{\partial t} + \mathbf{u} \cdot \nabla \rho' = \frac{1}{Pr Re} \nabla^2 \rho'.
\]

```
c-- subroutine userf (ix,iy,iz,ieg)  
include 'SIZE'  
include 'TOTAL'  
include 'NEKUSE'  
c
Fr2 = param(4) ! Froude number squared  
ffx = 0.0  
ffe = (temp - y) / Fr2  
ffz = 0.0  
return  
end
```

Figure 7: Examples of blocking phenomena in stratified flow at $Re = 10$: (a) spectral element mesh, $(E, N)=(384, 7)$, and steady-state streamfunction distribution for (b) no stratification, (c) $Fr^{-2}=1000$, $Pr = 1$, and (d) $Fr^{-2}=1000$, $Pr = 1000$.

Mathematics and Computer Science Division, Argonne National Laboratory
High Richardson Number Can Introduce Fast Time Scales

• Fast waves in stratified flow can potentially lead to additional temporal stability constraints.

• Also, must pay attention to reflection from outflow. (Same issue faced in experiments...)

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} - \frac{1}{Fr^2} (\rho' - y),
\]

\[
\nabla \cdot \mathbf{u} = 0
\]

\[
\frac{\partial \rho'}{\partial t} + \mathbf{u} \cdot \nabla \rho' = \frac{1}{Pr Re} \nabla^2 \rho'.
\]

Figure 8: Wave-like response to sudden application of gravitation forcing for \(Fr^{-2}=1000\), \(Pr = 1000\): (a) time trace of \(v\) at point "1" indicated in (b); (b) instantaneous streamline pattern at \(t = 0.5\).
Moving Mesh Examples

- peristaltic flow model
 nek5_svn/examples/peris

- 2D piston, intake stroke:
 (15 min. to set up and run)

- More recent 3D results by Schmitt and Frouzakis
Moving Mesh Examples

- Free surface case

 (Lee W. Ho, MIT Thesis, ‘89)

- Nominally functional in 3D, but needs some development effort.
A (hopefully) Quick Demo
Thank You!