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Overview 

0. Background 
 
I. Scalable simulations of turbulent flows 

❑ Discretization 
❑ Solvers 
❑ Parallel Implementation 

II. A quick demo… 
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      Recent SEM-Based Turbulence Simulations 

 Film Cooling 
Duggleby et al., 
TAMU 

Heat Transfer: Exp. and Num. 

Reynolds Number (1000-200,000) 
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 Enhanced Heat Transfer with Wire-
Coil Inserts  w/ J. Collins, ANL 

Pipe Flow: 

Reτ = 550 

Reτ = 1000 
G. El Khoury, KTH 
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Validation: Separation in an Asymmetric Diffuser    Johan Ohlsson*, KTH 

❑  Challenging high-Re case with flow separation and recovery 
❑  DNS at Re=10,000:  E=127750, N=11, 100 convective time units 
❑  Comparison with experimental results of Cherry et al. 
❑  Gold Standard at European Turbulence Measurement & Modeling ’09. 

u=.4U 

SEM           Expt. 

Axial Velocity  

Pressure Recovery 

*J. Fluid Mech., 650  (2010) 

. . . .  Expt 
               SEM 
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 OECD/NEA T-Junction Benchmark 

n  E=62000 spectral elements of order N=7  (n=21 million) 
–  Mesh generated with CUBIT 

n  Subgrid dissipation modeled with low-pass spectral filter 
n  1 Run: 24 hours on 16384 processors of BG/P (850 MHz) ~ 33x slower than uRANS 
n  SEM ranked #1 (of 29) in thermal prediction. 

F.,	  Obabko,	  Tautges,	  Caceres	  

Hot 

Cold 

Centerplane, side, and top views of temperature distribution 
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LES Predicts Major Difference in Jet Behavior for Minor Design Change 

Results:  

❑  Small perturbation 
yields O(1) change in 
jet behavior 

❑  Unstable jet, with low-
frequency (20 – 30 s) 
oscillations 

❑  Visualization shows 
change due to jet / 
cross-flow interaction 

❑  MAX2 results NOT 
predicted by RANS 

MAX1 
 
 
 
 
 
 
MAX2 
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Nek5000: Scalable Open Source Spectral Element Code 

❑  Developed at MIT in mid-80s    (Patera, F., Ho, Ronquist) 

❑  Spectral Element Discretization:  High accuracy at low cost 

❑  Tailored to LES and DNS of turbulent heat transfer, but also supports 
❑  Low-Mach combustion, MHD, conjugate heat transfer, moving meshes 
❑  New features in progress:  compressible flow (Duggleby), adjoints, 

immersed boundaries (KTH) 

❑  Scaling:  1999 Gordon Bell Prize;  Scales to over a million MPI processes. 

❑  Current Verification and validation: 
> 900 tests performed after each code update 
> 200 publications based on Nek5000 
> 175 users since going open source in 2009 
> … 
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217	  Pin	  Problem,	  N=9,	  E=3e6:	  
	  

–	  2	  billion	  points	  
	  

–	  	  BGQ	  –	  524288	  cores	  
•  1	  or	  2	  ranks	  per	  core	  

–  60%	  parallel	  efficiency	  at	  	  
 1 million	  processes	  

–  2000	  points/process	  
à	  Reduced	  1me	  to	  solu1on	  for	  a	  
	  	  	  	  	  	  broad	  range	  of	  problems	   Number of Cores 
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BG/Q Strong Scaling 

Reactor Assembly 
Strong scaling 
N=2.0 billion 
S. Parker, ALCF 

4000 pts/core 
2000 pts/process 

Scaling to a Million Processes 
 

               w / Scott Parker, ALCF 
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Influence of Scaling on Discretization 
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Influence of Scaling on Discretization 

 Large problem sizes enabled by peta- and exascale computers allow propagation of 
small features (size λ)  over distances L >> λ.     If speed ~ 1, then tfinal ~ L/ λ. 

❑  Dispersion errors accumulate linearly with time:  
  
~|correct speed – numerical speed| * t                        (for each wavenumber) 

à errort_final ~ ( L / λ ) * | numerical dispersion error | 

❑  For fixed final error εf, require:  numerical dispersion error ~ (λ / L)εf, << 1. 
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Influence of Scaling on Discretization 

 Large problem sizes enabled by peta- and exascale computers allow propagation of 
small features (size λ)  over distances L >> λ.     If speed ~ 1, then tfinal ~ L/ λ. 

❑  Dispersion errors accumulate linearly with time:  
  
~|correct speed – numerical speed| * t                        (for each wavenumber) 

à errort_final ~ ( L / λ ) * | numerical dispersion error | 

❑  For fixed final error εf, require:  numerical dispersion error ~ (λ / L)εf, << 1. 

 

High-order methods can efficiently deliver small dispersion errors.            
                                                    (Kreiss & Oliger 72,  Gottlieb et al. 2007) 

 

Our objective is to realize the advantage of high-order methods, at low-order costs. 
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Motivation for High-Order 

High-order accuracy is uninteresting unless 

❑ Cost per gridpoint is comparable to low-order methods 

❑ You are interested in simulating interactions over a broad 
range of scales… 

Precisely the type of inquiry enabled by HPC and 
leadership class computing facilities. 

1
2 
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Incompressible Navier-Stokes Equations 

❑  Key algorithmic / architectural issues: 

❑  Unsteady evolution implies many timesteps, significant reuse of 
preconditioners, data partitioning, etc. 

❑  Div u = 0 implies long-range global coupling at each timestep   
 à iterative solvers 

   communication intensive 
   opportunity to amortize adaptive meshing, etc. 

 
❑  Small dissipation à large number of scales à large number of 

gridpoints for high Reynolds number Re 
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Navier-Stokes Time Advancement 

 

❑  Nonlinear term:  explicit   
❑ k th-order backward difference formula / extrapolation   ( k =2 or 3 ) 
❑ k th-order characteristics   (Pironneau ’82, MPR ‘90) 

❑  Linear Stokes problem: pressure/viscous decoupling: 
❑  3 Helmholtz solves for velocity               (“easy” w/ Jacobi-precond.CG) 
❑  (consistent) Poisson equation for pressure   (computationally dominant) 

❑  For LES, apply grid-scale spectral filter            (F. & Mullen 01, Boyd ’98) 
  – in spirit of HPF model    (Schlatter 04) 
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Timestepping Design 

❑  Implicit: 
❑  symmetric and (generally) linear terms, 
❑  fixed flow rate conditions 

❑  Explicit: 
❑  nonlinear, nonsymmetric terms, 
❑  user-provided rhs terms, including  

❑ Boussinesq and Coriolis forcing 

❑  Rationale: 
❑  div u = 0 constraint is fastest timescale 
❑  Viscous terms: explicit treatment of 2nd-order derivatives à Δt ~ O(Δx2)  
❑  Convective terms require only Δt ~ O(Δx) 
❑  For  high Re, temporal-spatial accuracy dictates Δt ~ O(Δx) 
❑  Linear symmetric is “easy” – nonlinear nonsymmetric is “hard” 
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BDF2/EXT2 Example 
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BDFk/EXTk 

❑  BDF3/EXT3 is essentially the same as BDF2/EXT2 
❑  O(Δt3) accuracy 
❑  essentially same cost   
❑  accessed by setting Torder=3 (2 or 1) in .rea file 

❑  For convection-diffusion and Navier-Stokes, the “EXTk” part of the 
timestepper implies a CFL (Courant-Friedrichs-Lewy) constraint 

❑  For the spectral element method, Δx ~ N -2, which is restrictive. 
❑  We therefore often use a characteristics-based timestepper. 

 (IFCHAR = T in the .rea file) 
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Characteristics Timestepping 

❑  Apply BDFk to material derivative, e.g., for k=2: 

❑  Amounts to finite-differencing along the characteristic leading into 
xj 
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Characteristics Timestepping 

❑  Δt can be >> ΔtCFL         (e.g., Δt ~ 5-10 x ΔtCFL ) 

❑  Don’t need position (e.g., Xj
n-1) of characteristic departure 

point, only the value of un-1(x) at these points. 

 These values satisfy the pure hyperbolic problem: 

 which is solved via explicit timestepping with Δs ~ ΔtCFL 
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Spatial Discretization: Spectral Element Method   
                                                   (Patera 84, Maday & Patera 89) 

❑  Variational method, similar to FEM, using GL quadrature. 

❑  Domain partitioned into E high-order quadrilateral (or hexahedral) elements 
(decomposition may be nonconforming - localized refinement)  

❑  Trial and test functions represented as N th-order tensor-product 
polynomials within each element.  (N ~ 4 -- 15, typ.) 

❑  EN 3 gridpoints in 3D,  EN 2 gridpoints in 2D. 

❑  Converges exponentially fast with N for smooth solutions.  

3D nonconforming mesh for  
arteriovenous graft simulations: 
E = 6168 elements, N = 7 
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Spectral Element Convergence: Exponential with  N 

Exact Navier-Stokes Solution  (Kovazsnay ‘48) 
❑  4 orders-of-magnitude 

error reduction when 
doubling the resolution 
in each direction 

❑  Benefits realized through tight 
data-coupling. 

❑  For a given error, 
❑  Reduced number of gridpoints  

❑  Reduced memory footprint. 

❑  Reduced data movement. 



Mathematics and Computer Science Division, Argonne National Laboratory 

Spectral Element Discretization 
       

❑  Introduction 

 

2D basis function, N=10 
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2D basis function, N=10 

Spectral Element Basis Functions   

❑  Tensor-product nodal basis: 

❑  ξj = Gauss-Lobatto-Legendre quadrature points: 

 - stability ( not uniformly distributed points ) 
 - allows pointwise quadrature (for most operators…) 
 - easy to implement BCs and C0 continuity 

hi(r) 
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Influence of Basis on Conditioning 

Monomials: xk 
 

 
 
 
                 Uniformly spaced nodes 
 
 
 
 
 
 
                 GLL Points ~ N 3 

n  Monomials and Lagrange interpolants on uniform points exhibit 
exponentional growth in condition number. 

n  With just a 7x7 system the monomials would lose 10 significant 
digits (of 15, in 64-bit arithmetic). 
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 Attractive Feature of Tensor-Product Bases (quad/hex elements) 

❑  Local tensor-product form  (2D), 

allows derivatives to be evaluated as fast matrix-matrix products: 

mxm 
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   Local matrix-free stiffness matrix in 3D on Ω e,  
 

❑  Operation count is only O (N 4) not O (N 6)                [Orszag ‘80 ] 
❑  Work is dominated by fast matrix-matrix products ( Dr , Ds ,  Dt ) 
❑  Memory access is 7 x number of points   

– because of GLL quadrature, Grr ,Grs, etc., are diagonal 

Fast Operator Evaluation	
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Spectral Filter   

❑  Expand in modal basis: 

❑  Set filtered function to: 

❑  Spectral convergence and continuity 
preserved.  (Coefficients decay 
exponentially fast.) 

❑  In higher space dimensions: 

Boyd ’98, F. & Mullen ‘01 
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Filtering Cures High Wavenumber Instabilities 

❑  Free surface example: 
Error in OS Growth Rate 
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Dealiasing  

When does straight quadrature fail ?? 
Double shear layer example: 

OK 
High-strain regions 
are troublesome… 
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When Does Quadrature Fail?  

Consider the model problem: 
 
 
Weighted residual formulation: 
 
 
 
 
 
 
 
 
Discrete problem should never blow up. 
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When Does Quadrature Fail?  

 Weighted residual formulation vs. spectral element method: 
 
 
 
 

 This suggests the use of over-integration (dealiasing) to ensure 
that skew-symmetry is retained     

( Orszag ’72, Kirby & Karniadakis ‘03, Kirby & Sherwin ’06) 
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Aliased / Dealiased Eigenvalues:    
  

❑  Velocity fields model first-order terms in expansion of straining and rotating flows. 
❑  Rotational case is skew-symmetric 

❑  Over-integration restores skew-symmetry                 (Malm et al, JSC 2013) 

               N=19, M=19           N=19, M=20 

  c = (-x,y) 
 
 
 
 
   

  c = (-y,x) 
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Excellent transport properties, even for non-smooth solutions 

Convection of non-smooth data on a 32x32    
  grid   (K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77) 
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Relative Phase Error for h vs. p Refinement:  ut + ux = 0 

h-refinement                                                p-refinement 
  

❑  x-axis = k / kmax ,  kmax := n / 2     ( Nyquist ) 
❑  Fraction of resolvable modes increased only through p-refinement  

 – dispersion significantly improved w/ exact mass matrix (Guermond, Ainsworth) 

❑  Polynomial approaches saturate at k / kmax = 2 / π  

              à N = 8-16 ~ point of marginal return  
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Impact of Order on Costs 

❑  To leading order, cost scales as number of gridpoints, regardless 
of approximation order.     WHY? 
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Impact of Order on Costs 

❑  To leading order, cost scales as number of gridpoints, regardless 
of SEM approximation order.     WHY? 

❑  Consider Jacobi PCG as an example: 
  z = D -1 r 

 r = r t z 
 p = z + β p 
 w = A p 
 σ = w t p 
 x = x + α p 
 r = r – α p 

❑  Six O(n) operations with order unity computational intensity. 

❑  One matrix-vector product dependent on approximation order 

❑  Reducing n is a direct way to reduce data movement. 
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•  For SEM, memory scales as number of gridpoints, n.   
•  Work scales as nN, but is in form of (fast) matrix-matrix products. 

Periodic Box; 32 nodes, each with a 2.4 GHz Pentium Xeon  

CPU time vs. #dofs, varying N.                                   Error vs. #dofs, varying N 

Cost vs. Accuracy:  Electromagnetics Example 
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What About Nonlinear Problems? 
 
Are the high-order phase benefits manifest in linear problems 
evident in turbulent flows with nontrivial physical dispersion 
relations? 

3
8 
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Nonlinear Example:   NREL Turbulent Channel Flow Study 

❑  Accuracy:   Comparison to several metrics in turbulent DNS, Reτ = 180   (MKM’99) 

 
 
❑  Results:  7th-order SEM needs an order-of-magnitude fewer points than 2nd-order FV. 

Sprague et al., 2010 

 7th-order SEM   FV 

       ny:   # of points in wall-normal direction  

 Accuracy 



Mathematics and Computer Science Division, Argonne National Laboratory 

Nonlinear Example:   NREL Turbulent Channel Flow Study 

❑  Test case:  Turbulent channel flow comparison to DNS  of MKM ’99. 

 
 

 
❑  Costs:   Nek5000 & OpenFOAM have the same cost per gridpoint 

Sprague et al., 2010 

P:  # of processors 

 Performance 



Mathematics and Computer Science Division, Argonne National Laboratory 

Overview 

I.  Scalable simulations of turbulent flows 
❑ Discretization 
❑ Solvers 
❑ Parallel Implementation 

II. A quick demo… 
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Scalable Linear Solvers 

❑  Key considerations: 

❑  Bounded iteration counts as nàinfinity 

❑  Cost that does not scale prohibitively with number of processors, P 

❑  Our choice: 

❑  Projection in time: extract available temporal regularity in {pn-1, pn-2,…,pn-k} 

❑  CG or GMRES,  preconditioned with multilevel additive Schwarz 

❑  Coarse-grid solve:   
❑  XXT projection-based solver 
❑  single V-cycle of well-tuned AMG    (J. Lottes, 2010) 
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Projection in Time for Axn = bn      ( A - SPD)	


(update X l  ) 

  (best fit solution) 

A

X l 
x 

x  
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Initial guess for Apn = gn  via projection onto previous solutions	


❑  || pn - p*||A = O(Δtl) + O( εtol )                            	


❑  Results with/without projection (1.6 million pressure nodes): 

❑  Similar results for pulsatile carotid artery simulations –                                    
 108-fold reduction in initial residual 

Pressure Iteration Count Initial Pressure Residual 
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Scalable Linear Solvers 

❑  Key considerations: 

❑  Bounded iteration counts as nàinfinity 

❑  Cost that does not scale prohibitively with number of processors, P 

❑  Our choice: 

❑  Projection in time – extract available temporal regularity in {pn-1, 
pn-2,…,pn-k} 

❑  CG or GMRES,  preconditioned with multilevel additive Schwarz 

❑  Coarse-grid solve:   
❑  FOR SMALL PROBLEMS:   XXT projection-based solver  (default). 
❑  FOR LARGE PROBLEMS: single V-cycle of well-tuned AMG (Lottes) 
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Multilevel Overlapping Additive Schwarz Smoother  

(Dryja & Widlund 87, Pahl 93, F 97, FMT 00, F. & Lottes 05) 

d 

Local Overlapping Solves: FEM-based 
Poisson problems with homogeneous  
Dirichlet boundary conditions, Ae . 

Coarse Grid Solve: Poisson problem 
using linear finite elements on entire 

spectral element mesh, A0 (GLOBAL). 
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Scaling Example:  Subassembly with 217 Wire-Wrapped Pins 

❑  3 million 7th-order spectral elements (n=1.01 billion) 
❑  16384–131072 processors of IBM BG/P 
❑  15 iterations per timestep;  1 sec/step @ P=131072 
❑  Coarse grid solve < 10% run time at P=131072 

η=0.8 @  
P=131072 

Strong Scaling 

7300 pts/ 
processor 
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Some Limitations of Nek5000 

❑  No steady-state NS  or RANS:    
❑ unsteady RANS under development / test – Aithal 

❑  Lack of monotonicity for under-resolved simulations 
❑  limits, e.g., LES + combustion 
❑ Strategies under investigation: DG (Fabregat), Entropy Visc. 

❑ Meshing complex geometries: 
❑  fundamental:  meshing always a challenge;   

    hex-based meshes intrinsically anisotropic 
 
❑  technical:  meshing traditionally not supported as part

   of advanced modeling development 
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Mesh Anisotropy 

A common refinement scenario (somewhat exaggerated): 

❑  Refinement propagation leads to 
❑  unwanted elements in far-field 
❑  high aspect-ratio cells that are detrimental 

to iterative solver performance  (F. JCP’97) 

 Refinement in region of 
 interest yields unwanted 
high-aspect-ratio cells. 
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  Alternative Mesh Concentration Strategies 
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Meshing Options for More Complex Domains 

❑  genbox:  unions of tensor-product boxes 

❑  prenek:   basically 2D + some 3D or 3D via extrusion (n2to3) 

❑ Grow your own: 217 pin mesh via matlab; BioMesh 

❑  3rd party:  CUBIT + MOAB, TrueGrid, Gambit, Star CD 

❑ Morphing: 
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Morphing to Change Topography 
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Stratified Flow Model  

•  Blocking phenomena – Tritton 

•  Implemented as a rhs forcing: 
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High Richardson Number Can Introduce Fast Time Scales  

•  Fast waves in stratified flow can 
potentially lead to additional 
temporal stability constraints. 

•  Also, must pay attention to 
reflection from outflow.(Same 
issue faced in experiments…) 
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Moving Mesh Examples 

❑  peristaltic flow model 
   nek5_svn/examples/peris 
 
 
❑  2D piston, intake stroke:   

 (15 min. to set up and run) 
 
❑  More recent 3D results by 

Schmitt and Frouzakis 
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Moving Mesh Examples 

❑  Free surface case 

 (Lee W. Ho, MIT Thesis, ‘89) 
 
 
❑  Nominally functional in 3D, but 

needs some development effort. 



Mathematics and Computer Science Division, Argonne National Laboratory 

A (hopefully) Quick Demo 
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Thank You! 


