Study of Gulf Coast Deepwater spill site reveals key to tracking pollutants
(WaterWorld)
MIAMI, FL, Aug. 18, 2014 — Results from a new study of ocean circulation patterns at the site of the Deepwater Horizon oil spill, which occurred in the Gulf of Mexico in April of 2010, have revealed the significant role that small-scale ocean currents play in the spread of pollutants. Further, these findings provide new information to help predict the movements of oil and other pollutants in the ocean.
Nearly two years after the Deepwater Horizon incident, scientists from the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE), based at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, conducted a drifter experiment in the northern Gulf of Mexico spill site to study small-scale ocean currents ranging from 100 meters to 100 kilometers.
“Our results conclusively show that ocean flows at small scales (below 10 kilometers) contain significant energy fluctuations to control the initial spread of pollutant clouds,” said UM Rosenstiel School Professor and CARTHE Director Tamay Özgökmen. “Now that we have quantified this missing piece of the puzzle, we can improve our real-time predictive capabilities in the event of a future oil spill.”